9688
J. Am. Chem. Soc. 1998, 120, 9688-9689
point to a preference for structure c10,26 or d.5,8 Molecular weight
determinations by cryoscopy (THF) strongly indicated that this
type of cyanocuprate exists as a discrete monomeric species:
[R2Cu(CN)Li2].6b At this point, it should be emphasized that the
composition of organocopper (and aryllithium) aggregates are
strongly solvent dependent (vide infra).6,11 Our earlier investiga-
tions have shown that the use of the C,N-chelating aminoaryl
anion [C6H4CH2NMe2-2]-,12 instead of the simple parent phenyl
anions has a stabilizing effect on a variety of copper complexes
including organocopper(I) species.13,14 This has allowed the
isolation of well-defined compounds that have been unequivocally
characterized both in the solid state and in solution.
A Model Structure for the Resting State of
Cyanocuprate Reagents R2Cu(CN)Li2. The X-ray
1
Crystal Structure of [Ar2Cu(CN)Li2(THF)4]∞
Claudia M. P. Kronenburg,† Johann T. B. H. Jastrzebski,†
Anthony L. Spek,‡ and Gerard van Koten*,†
Department of Metal-Mediated Synthesis, Debye Institute
Laboratory of Crystal and Structural Chemistry, BijVoet
Center for Biomolecular Research, Utrecht UniVersity
Padualaan 8, 3584 CH Utrecht, The Netherlands
ReceiVed January 21, 1998
We now report on the synthesis, isolation, and structural
characterization (X-ray) of [Ar2Cu(CN)Li2(THF)4]∞ (1, Ar )
[C6H4CH2NMe2-2]-), which represents the first fully elucidated
example of a cyanocuprate of the general stoichiometry R2Cu-
(CN)Li2. Compound 1 is obtained as the only reaction product
when 2 equiv of ArLi is treated with 1 equiv of CuCN in THF at
low temperature (-78 °C; eq 1). Crystals suitable for single-
crystal X-ray diffraction were obtained from a solution of 1 in
THF at -30 °C.
Among organocopper reagents, cyanocuprates are members of
a versatile class of reagents that find useful application in or-
ganic synthesis.2,3 Depending on the synthetic route, two different
types can be distinguished: (i) 1:1 cyanocuprates, formulated as
RCu(CN)Li, obtained from the reaction of equimolar amounts
of an organolithium with CuCN, and (ii) 2:1 cyanocuprates with
R2Cu(CN)Li2 stoichiometry, a 2:1 molar mixture of an organo-
lithium with CuCN. Initially, it has been proposed that 2:1 cyano-
cupratesexistinsolutionasCu(I)dianionicspecies,[R2Cu(CN)]2-2[Li]+
and 1:1 species as monoanions, [RCu(CN)]-.4 In both of these
cyanocuprates, the CN- anion is thought to act simply as a non-
transferable ligand during reactivity. Despite their widespread
use in organic synthesis, there has been little success in obtaining
reliable structural (solid-state or solution) data about cyanocu-
prates. This has led to considerable debate among academic re-
searchers concerning the proposed structural motifs of these
compounds.
The molecular structure in the solid state of 1 reveals a linear
(zigzag) polymeric chain, consisting of alternating [Ar2Cu]-
(10) Huang, H.; Alvarez, K.; Cui, Q.; Barnhart, T. M.; Snyder, J. P.; Penner-
Hahn, J. E. J. Am. Chem. Soc. 1996, 118, 8808.
Four different models have been put forward to describe the
structure of 2:1 cyanocuprates: (a) a dianionic species with a
three-coordinate Cu(I) center,4 (b) a monoanionic copper species
(11) (a) Wehman, E.; Jastrzebski, J. T. B. H.; Ernsting, J.-M.; Grove, D.
M.; van Koten, G. J. Organomet. Chem. 1988, 353, 133. (b) Jastrzebski, J. T.
B. H.; van Koten, G.; Konijn, M.; Stam, C. H. J. Am. Chem. Soc. 1982, 104,
5490. (c) Reich, H. J.; Gudmundsson, B. O. J. Am. Chem. Soc. 1996, 118,
6074. (d) Hope, H.; Power, P. P. J. Am. Chem. Soc. 1983, 105, 5320. (e)
Lorenzen, N. P.; Weiss, E. Angew. Chem., Int. Ed. Engl. 1990, 29, 300.
(12) The CH2NMe2 substituent in [C6H4CH2NMe2-2]- (abbreviated as Ar-)
can be considered as a well-positioned intramolecular “solvent” molecule,
11d
viz. the similar structural features of Ph4Li4(OEt2)4 and Ar4Li4 as well as
11e
of Ph4Cu2Li2(OEt2)2 and Ar4Cu2Li2.
(13) van Koten, G.; Leusink, A. J.; Noltes, J. G. J. Chem. Soc., Chem.
Commun. 1970, 1107.
with a lithiumcyanide cationic counterion,5,25 (c) a neutral trinu-
clear structure with a diagonally coordinated Cu(I) center and
LiCN incorporated in the overall structure,6 and (d) a mixture of
the neutral cuprate and LiCN.7
(14) (a) van Koten, G.; Noltes, J. G. J. Chem. Soc., Chem. Commun. 1972,
940. (b) van Koten, G.; Jastrzebski, J. T. B. H.; Muller, F.; Stam, C. H. J.
Am. Chem. Soc. 1985, 107, 697.
(15) X-ray data for 1 are available as Supporting Information.
(16) Leoni, P.; Pasquali, M.; Ghilardi, C. A. J. Chem. Soc., Chem. Commun.
1983, 240.
(17) Hope, H.; Olmstead, M. M.; Power, P. P.; Sandell, J.; Xu, X. J. Am.
Chem. Soc. 1985, 107, 4337.
(18) Cyanocuprate 1 contains a two center-two electron (2c-2e) Cu-C bond
whereas in Ar4Cu2Li2 each aryl group is 3c-2e bonded to a CuLi atomic pair.
(19) Bertz, S. H. J. Am. Chem. Soc. 1991, 113, 5470.
(20) (a) Boche, G.; Bosold, F.; Marsch, M.; Harms, K. Angew. Chem. 1998,
110, 1779. (b) Hwang, C.-S.; Power, P. P. J. Am. Chem. Soc. 1998, 120, 6409.
(21) Penner-Hahn et al. reported an ν(CtN) of 2115 cm-1 for Me2Cu(CN)-
Li2 in solution which would be in agreement with ab initio calculations of a
seven-membered cyclic cyanocuprate.10 The ν(CtN) value (2115 cm-1) of [Ar2-
Cu(CN)Li2], 1, in THF is, however, very similar to that previously reported
for the 2:1 cyanocuprates.10
(22) It should be noted that the applied methodology (measurements of
freezing point depression) presents a value indicative for the amount of
particles present in solution and not the molecular weight of the individual
species. If 1 completely dissociates in THF solution into cationic and anionic
species which simultaneously associate to higher aggregates (Li2CNf
(Li2CN)nn+; n g 3), a virtual molecular weight close to the value of a neutral
monomeric species will be calculated. Such processes a priori may not be
excluded since it has been well established that a combination of Li+, CN-,
and additional solvent molecules might give rise to highly aggregated species
as is exemplified in the solid-state structure of [LiCN(pyridine)2]∞.23
(23) Purdy, A. P.; Houser, E.; George C. F. Polyhedron 1997, 16, 3671.
(24) (a) Nakamura, E.; Mori, S.; Nakamura, M.; Morakuma, K. J. Am.
Chem. Soc. 1997, 119, 4887. (b) Nakamura, E.; Mori, S.; Nakamura, K. J.
Am. Chem. Soc. 1997, 119, 4900.
Extensive spectroscopic studies have been performed (EXAFS,8
NMR5,9,26 and IR10) to elucidate the structure of dialkylcyanocu-
prates. One of these studies prefers structure a9 but the others
* Authortowhomcorrespondenceshouldbeaddressed.E-mail: g.vankoten@chem.uu.nl.
† Debye Institute.
‡ Bijvoet Center for Biomolecular Research.
(1) Ar ) [C6H4CH2NMe2-2]-: the structure of the title compound in the
solid state is represented by (µ2Li2-C,N-CN)Li2‚(THF)4(µ2Cu,Li-CCu,NLi-2-
Me2NCH2C6H4)2Cu.
(2) Lipshutz, B. H.; Wilhelm, R. S. J. Am. Chem. Soc. 1981, 103, 7672.
(3) (a) Posner, G. H., An Introduction to Synthesis Using Organocopper
Reagents: John Wiley & Sons: New York, 1980. (b) Lipshutz, B. H.; Sengupta,
S. Org. React. 1992, 41, 139. (c) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski,
J. A. Tetrahedron 1984, 40, 5005. (d) Bertz, S. H.; Fairchild, E. H.
Encyclopedia of Reagents for Organic Synthesis: Wiley: New York, 1995;
pp 1312-1315, 1341-1343, 1346-1349. (e) Krause, N.; Gerold, A. Angew.
Chem., Int. Ed. Engl. 1997, 36, 186.
(4) Lipshutz, B. H. Synthesis 1987, 325.
(5) Bertz, S. H. J. Am. Chem. Soc. 1990, 112, 4031.
(6) (a) Snyder, J. P.; Spangler, D. P.; Behling, J. R. J. Org. Chem. 1994,
59, 2665. (b) Gerold, A.; Jastrzebski, J. T. B. H.; Kronenburg, C. M. P.; Krause,
N.; van Koten, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 755.
(7) Bertz, S. H.; Miao, G.; Eriksson, M. Chem. Commun. 1996, 815.
(8) (a) Stemmler, T. L.; Barnhart, T. M.; Penner-Hahn, J. E.; Tucker, C.
E.; Knochel, P.; Bo¨hme, M.; Frenking, G. J. Am. Chem. Soc. 1995, 117, 12489.
(b) Barnhart, T. M.; Huang, H.; Penner-Hahn, J. E. J. Org. Chem. 1995, 60,
4310. (c) Stemmler, T.; Penner-Hahn, J. E.; Knochel, P. J. Am. Chem. Soc.
1993, 115, 348.
(25) Mobley, T. A.; Mu¨ller, F.; Berger, S. J. Am. Chem. Soc. 1998, 120,
1333.
(26) Bertz, S. H.; Nilsson, K.; Davidsson, O.; Snyder, J. P. Angew. Chem.,
Int. Ed. Engl. 1998, 37, 314.
(9) (a) Lipshutz, B. H.; Sharma, S.; Elsworth, E. L. J. Am. Chem. Soc.
1990, 112, 4032. (b) Lipshutz, B. H.; James, B. J. Org. Chem. 1994, 59, 7585.
S0002-7863(98)00244-3 CCC: $15.00 © 1998 American Chemical Society
Published on Web 09/09/1998