4
V. S. Moshkin, V. Ya. Sosnovskikh / Tetrahedron Letters xxx (2013) xxx–xxx
Chem. Pharm. Bull. 1996, 44, 1865–1870; (e) Coote, S. J.; Davies, S. G.; Fletcher,
A. M.; Roberts, P. M.; Thomson, J. E. Chem. Asian J. 2010, 5, 589–604; (f)
Maffrand, J. P.; Boigegrain, R.; Courregelongue, J.; Ferrand, G.; Frehel, D. J.
Heterocycl. Chem. 1981, 18, 727–734; (g) Mackay, C.; Waigh, R. D. J. Chem. Soc.,
Chem. Commun. 1982, 793–794; (h) Philippe, N.; Denivet, F.; Vasse, J.-L.;
Sopkova-de Olivera Santos, J.; Levacher, V.; Dupas, G. Tetrahedron 2003, 59,
8049–8056.
agent, and does not involve working with hazardous compounds,
an inert atmosphere, or chromatographic purification of the inter-
mediate liquid products, and thereby greatly facilitates the prepa-
ration of the target tetrahydroisoquinolines.
In conclusion, we have developed a new, three-step route to 4-
aryl-1,2,3,4-tetrahydroisoquinolines from aromatic aldehydes, sar-
cosine, and formaldehyde via a 5-aryloxazolidine intermediate, fol-
lowed by the reaction with an arylmagnesium bromide and final
acid-catalyzed cyclization. This method allows easy access to bio-
logically important tetrahydroisoquinoline derivatives. Further
application of this reaction for the construction of substituted tet-
rahydroisoquinolines and their hetero analogs is underway in our
laboratory and the results will be reported in due course.
8. Ruchirawat, S.; Tontoolarug, S.; Sahakitpichan, P. Heterocycles 2001, 635–640.
9. Crecente-Campo, J.; Vázquez-Tato, M. P.; Seijas, J. A. Tetrahedron 2009, 65,
2655–2659.
10. Singh, K. N.; Singh, P.; Singh, P.; Deol, Y. S. Org. Lett. 2012, 14, 2202–2205.
11. (a) Moshkin, V. S.; Sosnovskikh, V. Y.; Slepukhin, P. A.; Röschenthaler, G.-V.
Mendeleev Commun. 2012, 22, 29–31; (b) Moshkin, V. S.; Sosnovskikh, V. Y.;
Röschenthaler, G.-V. Tetrahedron Lett. 2012, 53, 3568–3572.
10.1016/j.tetlet.2013.02.087.
13. (a) Nyerges, M.; Fejes, I.; Virányi, A.; Groundwater, P. W.; Töke, L. Synthesis
2001, 1479–1482; (b) Ryan, J. H.; Spiccia, N.; Wong, L. S.-M.; Holmes, A. B. Aust.
J. Chem. 2007, 60, 898–904.
Acknowledgment
14. General procedure for the preparation of 4-aryl-1,2,3,4-tetrahydroisoquinolines 8.
A mixture of the substituted benzaldehyde (1.0 mmol), finely ground sarcosine
(0.13 g, 1.5 mmol), and paraformaldehyde (0.09 g, 3.0 mmol) was refluxed in
dry benzene (3.3 mL), with magnetic stirring and removal of formed water by
means of a Dean–Stark trap, for 6–8 h. The resulting solution was evaporated in
vacuo to give the oily 5-aryl-3-methyloxazolidine 6. This was dissolved in
toluene (1 mL) and quickly added to a solution of ArMgBr prepared from ArBr
(1.5 mmol) and Mg (0.04 g, 1.5 mmol) in THF (2 mL) at 0 °C with vigorous
stirring. The mixture was left overnight at room temperature. Concentrated
HCl (0.25 mL, 3.0 mmol) and toluene (3 mL) were added with stirring to the
cooled solution (À5 °C). The organic layer was decanted and the precipitate
additionally washed with toluene and Et2O. After basification with an excess of
aq NH3, extraction with CH2Cl2 (2 Â 2 mL), drying over Na2SO4, and
This work was supported financially by the RFBR (Grant 12-03-
31036).
References and notes
1. (a)Chemistry of Heterocyclic Compounds: Isoquinolines; Taylor, E. C., Weissberger,
A., Eds.; John Wiley & Sons: New York, 1981, 1990, 1995; Vol. 38, Parts 1–3; (b);
Charifson, P. S. Drugs Future 1989, 14, 1179–1185; (c) Shklyaev, Yu. V.; Kartsev,
V. G. Some 1,2,3,4-tetrahydroisoquinoline alkaloids of the 1-benzylisoquinoline
group. In Nature Isoquinoline Chemistry and Biological Activity; Kartsev, V. G.,
Ed.; IBS Press: Moscow, Russia, 2011; Vol. 8, pp 386–695.
evaporation, the corresponding N-benzyl-b-hydroxyphenethylamine
7 was
obtained. This was dissolved in CH2Cl2 (2 mL) and treated dropwise with concd
H2SO4 (2 mL) (96%—for 7a,b, 75%—for 7d,e) over 5 min. After stirring for 2 h, ice
chips were added and the aq solution made basic with aq NaOH solution. The
mixture was extracted with CH2Cl2 (2 Â 2 mL) and the combined organic
extracts dried over anhydrous Na2SO4, filtered through a thin layer of silica gel
and concentrated in vacuo. Amino alcohols 7c and 7f were cyclized using AlCl3
in CH2Cl2 (4.0 equiv, reflux, 1.5 h) and polyphosphoric acid (1.1 g of PPA—
1 mmol of 7f, 80–90 °C, 1.5 h), respectively. The free bases were converted into
hydrochloride salts with anhydrous ethereal HCl solution generated in situ
from i-PrOH (1.3 equiv) and AcCl (1.1 equiv).
2. (a) Brossi, A.; Grethe, G.; Teitel, S.; Wildman, W. C.; Bailey, D. T. J. Org. Chem.
1970, 35, 1100–1104; (b) Kobayashi, S.; Tokumoto, T.; Taira, Z. J. Chem. Soc.,
Chem. Commun. 1984, 1043–1044.
3. (a) Hoffmann, I.; Ehrhart, G.; Schmitt, K. Arzneim. Forsch. 1971, 21, 1045; (b)
Hunt, P.; Kannengiesser, M. H.; Raynaud, J. P. J. Pharm. Pharmacol. 1974, 26,
370–371.
4. (a) Molino, B. F.; Berkowitz, B.; Cohen, M. US Patent 20060111394, Chem. Abstr.
2006, 144, 488538.; (b) Molino, B. F.; Liu, S.; Berkowitz, B. A.; Guzzo, P.; Beck, J.
P.; Cohen, M. WO Patent 2006020049, Chem. Abstr. 2006, 144, 254149.; (c)
Pechulis, A. D.; Beck, J. P.; Curry, M. A.; Wolf, M. A.; Harms, A. E.; Xi, N.; Opalka,
C.; Sweet, M. P.; Yang, Z.; Vellekoop, A. S.; Klos, A. M.; Crocker, P. J.; Hassler, C.;
Laws, M.; Kitchen, D. B.; Smith, M. A.; Olson, R. E.; Liu, S.; Molino, B. F. Bioorg.
Med. Chem. Lett. 2012, 22, 7219–7222; (d) Deng, X.; Liang, J. T.; Liu, J.;
McAllister, H.; Schubert, C.; Mani, N. S. Org. Process Res. Dev. 2007, 11, 1043–
1050; (e) Jacob, J. N.; Nichols, D. E.; Kohli, J. D.; Glock, D. J. Med. Chem. 1981, 24,
1013–1015; (f) Riggs, R. M.; Nichols, D. E.; Foreman, M. M.; Truex, L. L. J. Med.
Chem. 1987, 30, 1887–1891.
5. (a) Schneider, C. S.; Weber, K. H.; Langbein, A.; Bechtel, W. D.; Boeke, K. DE
Patent 2746443, 1979; Chem. Abstr. 1979, 91, 456978.; (b) Schneider, C. S.;
Weber, K. H.; Langbein, A.; Bechtel, W. D.; Boeke, K. DE Patent 2833378, 1980;
Chem. Abstr. 1980, 93, 426418.; (c) Schneider, C. S.; Weber, K. H.; Daniel, H.;
Bechtel, W. D.; Boeke-Kuhn, K. J. Med. Chem. 1984, 27, 1150–1155; (d) Riggs, R.
M.; Nichols, D. E.; Foreman, M. M.; Truex, L. L.; Glock, D.; Kohli, J. D. J. Med.
Chem. 1987, 30, 1454–1458.
6. (a) Mondeshka, D. M.; Ivanova, N. S.; Ivanov, C. B.; Angelova, I. G.; Boyadjiev, S.
E.; Tancheva, C. N.; Tersiiska, S. A.; Tosheva, M. R.; Parashikov, V. A.; Paskov, V.
D.; Velkov, V. A. EP Patent 400319, 1990; Chem. Abstr. 1992, 116, 6435.; (b)
Mondeshka, D. M.; Angelova, I. G.; Tancheva, C. N.; Ivanov, C. B.; Daleva, L. D.;
Ivanova, N. S. Farmaco 1994, 49, 475–480.
7. (a) Venkov, A. P.; Vodenicharov, D. M. Synthesis 1990, 253–255; (b) Hara, H.;
Shirai, R.; Hoshino, O.; Umezawa, B. Heterocycles 1983, 20, 1945–1950; (c) Hara,
H.; Shirai, R.; Hoshino, O.; Umezawa, B. Chem. Pharm. Bull. 1985, 33, 3107–
3112; (d) Anan, H.; Tanaka, A.; Tsuzuki, R.; Yokota, M.; Yatsu, T.; Fujikura, T.
15. 4-(4-Bromophenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline
hydrochloride
(8b„4). White powder, yield 60% (overall yield based on the starting
aromatic aldehyde), mp 247–252 °C (245–250 °C in Ref. 6b).
16. 8-(4-Methoxyphenyl)-6-methyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline
hydrochloride (8e). White powder, yield 39%, mp 230–235 °C. 1H NMR
(400 MHz, CDCl3, free base) d 2.40 (s, 3H, MeN), 2.47 (dd, J = 11.3, 8.8 Hz, 1H,
7-CHH), 2.96 (dd, J = 11.3, 5.5 Hz, 1H, 7-CHH), 3.50 (d, J = 14.5 Hz, 1H, 5-CHH),
3.63 (d, J = 14.5 Hz, 1H, 5-CHH), 3.79 (s, 3H, MeO), 4.11 (t, J = 7.0 Hz, 1H, H-8),
5.85 (s, 2H, H-2), 6.32 (s, 1H, H-9), 6.52 (s, 1H, H-4), 6.83 (d, J = 8.6 Hz, 2H, Ar),
7.10 (d, J = 8.6 Hz, 2H, Ar); 13C NMR (126 MHz, DMSO-d6, for the hydrochloride)
d 41.0, 42.2, 53.6, 55.1, 55.9, 101.2, 105.9, 107.8, 114.3, 122.2, 128.8, 130.0,
132.7, 146.3, 146.9, 158.6. Anal. Calcd for C18H20ClNO3Á0.25H2O: C, 63.90; H,
6.11; N, 4.14. Found: C, 63.76; H, 6.20; N, 4.08.
17. 4-(4-Bromophenyl)-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine
hydrochloride (8f). Light yellow powder, yield 65%, mp 217–224 °C. 1H NMR
(400 MHz, CDCl3, free base) d 2.46 (s, 3H, MeN), 2.51 (dd, J = 11.6, 8.0 Hz, 1H, 5-
CHH), 3.00 (dd, J = 11.6, 5.5 Hz, 1H, 5-CHH), 3.66 (d, J = 14.5 Hz, 1H, 7-CHH),
3.77 (d, J = 14.5 Hz, 1H, 7-CHH), 4.10 (dd, J = 8.0, 5.5 Hz, 1H, H-4), 6.52 (d,
J = 5.1 Hz, 1H, H-3), 7.04–7.08 (m, 1H, H-2), 7.07 (d, J = 8.2 Hz, 2H, Ar), 7.41 (d,
J = 8.2 Hz, 2H, Ar); 13C NMR (126 MHz, DMSO-d6, for the hydrochloride) d 39.9,
42.3, 50.9, 55.7, 120.8, 125.6, 126.2, 128.0, 130.6, 131.7, 135.3, 139.3. Anal.
Calcd for C14H15BrClNS: C, 48.78; H, 4.39; N, 4.06. Found: C, 49.08; H, 4.36; N,
4.08.