J. Am. Chem. Soc. 2001, 123, 6419-6420
6419
Deoxygenations of (silox)3WNO and R3PO by
(silox)3M (M ) V, Ta) and (silox)3NbL (silox )
tBu3SiO): Consequences of Electronic Effects
Adam S. Veige,† Lee M. Slaughter,† Peter T. Wolczanski,*,†
Nikita Matsunaga,‡ Stephen A. Decker,§ and
Thomas R. Cundari*,§
HNbOSitBu2CMe2CH2 (5-Nb, 23 °C, <5 min)14 competed with
deoxygenation; 5-Nb then slowly deoxygenated 2, presumably
via reversible formation of 1-Nb. The thermodynamics of
deoxygenation15 were investigated by high-level quantum calcula-
tions,16 with (HO)3M serving as the model of respective tris-silox
centers in 1-M and 3-M. In each case the reaction was extremely
Cornell UniVersity
Department of Chemistry and Chemical Biology
Baker Laboratory, Ithaca, New York 14853
ReceiVed December 27, 2000
exoergic (25 °C: M ) V, ∆G°
) -66 kcal/mol; M ) Nb,
rxn
Ta, -100 kcal/mol). With favorable thermodynamics, the un-
competitive (1-Ta) and relatively slow (1-V, 1-Nb) deoxygen-
ations are puzzling.
Since (silox)3V (1-V, S ) 1) binds various L (L ) THF, py,
etc.), while (silox)3Ta (1-Ta, S ) 0) does not,17 the singlet and
triplet states of 1-M were examined via quantum calculations.16
Figure 1 reveals that 1-V is a triplet at the optimized geometries
Oxygen atom transfers involving terminal metal-oxo func-
tionalities are central to many biological transformations,1 promi-
nent in applications to organic synthesis,2-4 and of increasing
importance in inorganic systems as synthetic tools,5-7 objectives
in biomimicry,1,8,9 and targets of fundamental studies.5-13 As a
2
1
2
1
2
for S ) 0 ((dz ) ) and S ) 1 ((dz ) (dxz/dyz) ), and the TfS barrier
is 17 kcal/mol, assuming a facile intersystem crossing. 1-Ta is a
singlet at the optimized S ) 0 and S ) 1 geometries and its
intersystem crossing barrier is 17 kcal/mol. 1-Nb is a singlet, but
the conversion barrier to a triplet of nearly the same energy is 2
kcal/mol. If the approach of (silox)3WNO (2) to the 1-M center
is linear because of intermolecular silox/silox interactions, then
a 4e- repulsion will result in the case of 1-Ta, but successful
docking to an S ) 1 intermediate (silox)3MONW(silox)3 (1-
M-2) will occur for M ) V, Nb. The additional S-T barrier
forced on 1-Ta allows unimolecular cyclometalation to compete
with the bimolecular deoxygenation of 2.
t
synthetic route to (silox)3WN (4, silox ) Bu3SiO), the deoxy-
genation of (silox)3WNO (2) by (silox)3Ta (1-Ta) was attempted
without success, despite ample precedent in cleavages of ep-
oxides,10 N2O, NO,11 CO2, and CO.12 A comparison study
involving sources of M(silox)3 (1-M; M ) V, Nb, Ta) revealed
that features of deoxygenations of 2 and R3PO (R ) Me, Ph,
tBu) are the consequences of electronic effects enforced by a
limiting steric environment.
Table 1. summarizes the deoxygenation studies, and shows
that (silox)3Ta (1-Ta) preferred to cyclometalate to (silox)2-
HTaOSitBu2CMe2CH2 (5-Ta, 87%, 14 d)13 rather than deoxy-
genate (silox)3WNO (2)14 to (silox)3WN (4, 12%),14 whereas the
Table 1 lists the results of R3PO deoxygenations by (1-V, Ta)
and 1-NbL (L ) 4-pic, PMe3), which are predicted by quantum
calculations to be exothermic for V (-15 kcal/mol) and Nb or
Ta (-45 kcal/mol) with Me3PO. Curiously, 1-Ta and 1-NbL both
smaller (silox)3V (1-V)14 slowly (85 °C, ∼1.4 × 10-4 M-1 s-1
)
converted 2 to the nitride. (silox)3Nb(η2-N,C-4-picoline) (1-Nb-
(4-pic), S ) 0)11 and (silox)3NbPMe3 (1-NbPMe3, S ) 1)14
deoxygenated 2 and formed 4 and (silox)3NbO (3-Nb) swiftly at
first, then more slowly as the released 4-picoline and PMe3
inhibited the reactions, respectively. With a 4-picoline scavenger
(1-Ta) present in the former, swift cyclometalation to (silox)2-
t
deoxygenated Me3PO and Ph3PO, but failed with Bu3PO; 1-Ta
cyclometalated to 5-Ta, 1-Nb(4-pic) converted to (silox)3Nbd
NCHCHCMeCHCHdNb(silox)3 (6; 85 °C, 35 d) and 4-picoline,18
t
and 1-NbPMe3 decomposed. The inability to deoxygenate Bu3-
PO is not steric in origin, as an X-ray crystal structure of (silox)3V-
OPtBu3 (1-VOPtBu3) attests. R3PO deoxygenation attempts with
† Cornell University.
t
1-V led to (silox)3V-OPR3 (1-VOPR3; R ) Me, Ph, Bu),14 and
‡ Long Island University, Dept. of Chemistry, Brooklyn, New York 11201.
§ University of Memphis, Dept. of Chemistry, Memphis, Tennessee 38152.
(1) (a) Cytochrome P450, Structure, Mechanism and Biochemistry, 2nd
ed.; Ortiz de Montellano, P. R., Ed., Plenum: New York, 1995. (b) Enemark,
J. H.; Young, C. G. AdV. Inorg. Chem. 1993, 40, 1-88.
(2) (a) Palucki, M.; Finney, N. S.; Pospisil, P. J.; Gu¨ler, M. L.; Ishida, T.;
Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948-954. (b) Finney, N. S.;
Pospisil, P. J.; Chang, S.; Palucki, M.; Konsler, R. G.; Hansen, K. B.; Jacobsen,
E. N. Angew. Chem., Int. Ed. Engl. 1997, 36, 1720-1723.
(3) Katsuki, T. Coord. Chem. ReV. 1995, 140, 189-214.
(4) (a) Kolb, H. C.; VanNieuwenzhe, M. S.; Sharpless, K. B. Chem. ReV.
1994, 94, 2483-2547. (b) Norrby, P.-O.; Rasmussen, T.; Haller, J.; Strassner,
T.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 10186-10192.
(5) (a) Ruiz, J.; Vivanco, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J.
Chem. Soc. Chem. Commun. 1991, 762-764. (b) Vivanco, M.; Ruiz, J.;
Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics 1993, 12, 1802-
1810.
prolonged thermolysis (100 °C, >20 d) of (silox)3VO (3-V) with
PMe3 afforded some 1-VOPMe3, consistent with calculations that
portray the phospine oxide adducts as the most stable species in
the vanadium system.19,20
The S-T energetics of Figure 1 do not explain the slow rates
of deoxygenation of (silox)3WNO (2) by 1-NbL and 1-V, nor do
t
they rationalize the disparate R3PO (R ) Me, Ph) and Bu3PO
results with 1-Ta and 1-NbL. Is there an intrinsic problem to
t
O-atom transfer for 2 and Bu3PO?
The smaller substrates Me3PO and Ph3PO may attack (silox)3M
(1-M; M ) Nb, Ta) at the side of the PO bond, whereas O-atom
t
transfer from (silox)3WNO (2) and Bu3PO may be sterically
restricted to occur linearly.17 With substantial thermodynamic
impetus, the deoxygenations are swift as long as (silox)3M-OE
(6) Odom, A. L.; Cummins, C. C.; Protasiewicz, J. D. J. Am. Chem. Soc.
1995, 117, 6613-6614.
(7) (a) Crevier, T. J.; Mayer, J. M. J. Am. Chem. Soc. 1997, 119, 8485-
8491. (b) Hall, K. A.; Mayer, J. M. J. Am. Chem. Soc. 1992, 114, 10402-
10411.
(8) Lim, B. S.; Sung, K.-M.; Holm, R. H. J. Am. Chem. Soc. 2000, 122,
7410-7411 and references therein.
(9) Jin, N.; Bourassa, J. L.; Tizio, S. C.; Groves, J. T. Angew. Chem., Int.
Ed. 2000, 39, 3849-3851.
(10) Bonanno, J. B.; Henry, T. P.; Neithamer, D. R.; Wolczanski, P. T.;
Lobkovsky, E. B. J. Am. Chem. Soc. 1996, 118, 5132-5133.
(11) Veige, A. S.; Kleckley, T. S.; Chamberlin, R. L. M.; Neithamer, D.
R.; Lee, C. E.; Wolczanski, P. T.; Lobkovsky, E. B.; Glassey, W. V. J.
Organomet. Chem. 1999, 591, 194-203.
(12) Neithamer, D. R.; LaPointe, R. E.; Wheeler, R. A.; Richeson, D. S.;
Van Duyne, G. D.; Wolczanski, P. T. J. Am. Chem. Soc. 1989, 111, 9056-
9072.
(13) Miller, R. L.; Toreki, R.; LaPointe, R. E.; Wolczanski, P. T.; Van
Duyne, G. D.; Roe, D. C. J. Am. Chem. Soc. 1993, 115, 5570-5588.
(14) Spectroscopic information, magnetic measurements (Evans’ method),
and elemental analyses are available as Supporting Information.
(15) Holm, R. H.; Donahue, J. P. Polyhedron 1993, 12, 571-593.
(16) Calculated energetics were determined at the CCSD(T)/SBK(d)//
B3LYP/SBK(d) level of theory. (a) Becke, A. D. J. Chem. Phys. 1993, 98,
5648-5652. (b) Krauss, M.; Stevens, W. J.; Basch, H.; Jasien, P. G. Can. J.
Chem. 1992, 70, 612-630. (c) Bartlett, R. J.; Stanton, J. F. In ReViews in
Computational Chemistry; Boyd, D. B., Lipkowitz, K. B., Eds.; VCH
Publishers: New York, 1994; Vol. 5, pp 65-169.
(17) Covert, K. J.; Neithamer, D. R.; Zonnevylle, M. C.; LaPointe, R. E.;
Schaller, C. P.; Wolczanski, P. T. Inorg. Chem. 1991, 30, 2494-2508.
(18) (a) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E.
B. J. Am. Chem. Soc. 1997, 119, 247-248. (b) Kleckley, T. S. Ph.D. Thesis,
Cornell University, 1998.
(19) Quantum calculations suggest ∆G° ≈ -20 kcal/mol for (HO)3V +
OPMe3 f (HO)3VOPMe3, and ∆G° ≈ -6 kcal/mol for (HO)3VO + PMe3 f
(HO)3VOPMe3.
(20) Similar intermediates have recently been identified in transferases:
Smith, P. D.; Millar, A. J.; Young, C. G.; Ghosh, A.; Basu, P. J. Am. Chem.
Soc. 2000, 122, 9298-9299.
10.1021/ja004329w CCC: $20.00 © 2001 American Chemical Society
Published on Web 06/06/2001