Notes and references
† Spectral data obtained in C6D6 at 30 °C unless otherwise stated. 1H NMR:
1: (CDCl3) d 7.27–7.67 (aromatics); 6.78 (t, 3J 2.1 Hz, CH); 5.68 (s, OH);
3.69 (d, 3J 1.6 Hz, CH2); 1.57 (s), 1.44 [s, C(CH3)3]. 2: d 7.13–7.61
(aromatics); 6.61 (t, CH); 5.81 (s, C5H5); 3.36 (br, CH2); 1.61 (s), 1.28 [s,
C(CH3)3]. (C7D8, 230 °C): d 6.72–7.58 (aromatics); 6.60 (br, CH); 5.67 (s,
C5H5); 3.48 (d), 3.12 (d, 2J 23.8 Hz, CH2); 1.58 (s), 1.25 [s, C(CH3)3]. 3: d
4
7.57 (d), 7.33 (d, J 2.4 Hz, mC6H2); 7.04-7.55 (other aromatics); 6.29 (t,
CH); 5.59 (s, C5H5); 3.05 (d, CH2); 1.60 (s), 1.28 [s, C(CH3)3]; 0.64 (br,
TiMe). (C7D8, 245 °C): d 6.97–7.61 (aromatics); 6.31 (d, CH); 5.50 (s,
C5H5); 2.99 (AB, CH2); 1.64 (s), 1.30 [s, C(CH3)3]; 0.76 (s), 0.65 (s, TiMe).
5
4: d 6.79-7.40 (aromatics); 6.18 (d), 6.12 (d), 5.19 (d, h -C5H2); 1.36 (s),
1.29 (s), 1.29 (s), 1.24 [s, C(CH3)3]. (CDCl3): d 6.89–7.48 (aromatics); 6.89
5
(d), 6.75 (d), 6.62 (d), 5.42 (d, h -C5H2); 1.31 (s), 1.30 (s), 1.19 (s), 1.05 [s,
C(CH3)3]. 5: d 7.17–7.73 (aromatics); 6.60 (t, CH); 3.48 (br, CH2); 3.15 (s,
NMe2); 1.70 (s), 1.37 [s, C(CH3)3]. 6: d 7.58 (d), 7.51 (d), 7.28 (t), 7.05 (t,
C6H4); 7.43 (d), 6.76 (d, m-H); 7.10 (d), 6.62 (d, C5H2); 2.76 (br, NMe2);
1.74 (s), 1.15 [s, C(CH3)3]. (C7D8, 40 °C): d 7.56 (d), 7.49 (d), 7.25 (t), 7.05
(t, C6H4); 7.39 (d), 6.69 [d, 4J 1.7 Hz, m-H); 7.09 (d), 6.64 (d, C5H2); 2.87
(s, NMe2); 1.73 (s), 1.21 [s, C(CH3)3]. (C7D8, 230 °C): d 6.59-7.63
(aromatics); 2.98 (br), 2.43 (br), 1.92 (br, NMe2); 1.79 (s), 1.18 [s,
C(CH3)3]. (C7D8, 255 °C): d 6.57–7.64 (aromatics); 3.00 (s, 6H), 2.86 (s,
6H), 2.36 (s, 3H), 1.88(s, 3H, NMe2); 1.81 (s), 1.17 [s, C(CH3)3]. Selected
13C NMR, 1: (CDCl3): d 149.3 (OC); 144.4, 144.2, 141.7, 141.5, 135.3,
132.7, 126.5, 125.5, 124.1, 123.9, 123.8, 121.2, 120.9 (unsaturated C); 38.7
(CH2); 35.1, 34.3 [C(CH3)3); 31.7, 29.7 [C(CH3)3]. 2: d 165.5 (TiOC);
121.0 (C5H5); 38.7 (CH2); 35.9, 34.7 [C(CH3)3]; 31.5, 30.6 [C(CH3)3]. 3: d
161.7 (TiOC); 114.3 (C5H5); 57.7 (br, TiMe); 38.4 (CH2); 35.7, 34.5
[C(CH3)3]; 31.7, 30.5 [C(CH3)3]. (C7D8, 245 °C): d 161.6 (TiOC); 114.3
(C5H5); 58.8, 56.8 (TiMe); 38.3 (CH2); 35.8, 34.6 [C(CH3)3]; 31.7, 30.3
Fig. 2 Molecular structure of 4a showing the atomic numbering scheme.
Selected interatomic distances (Å) and angles (°): Zr–O(1) 2.015(2), Zr–
C(23) 2.487(3), Zr–C(22) 2.500(3), Zr–C(21) 2.532(3), Zr–C(24) 2.568(3),
Zr–C(29) 2.640(3), O(1)–Zr-O(1) 97.6(1), Zr–O(1)–C(1) 128.4(2).
Scheme 4
5
[C(CH3)3]. 4: d 172.2, 171.5 (ZrOC); 115.5, 97.0, 96.9 (h -C5H2); 35.1,
34.5, 34.4 [C(CH3)3]; 31.9, 29.6 [C(CH3)3]. (CDCl3, 30 °C): d 171.5, 170.9
(100 °C) in C6D6, a further equivalent of HNMe2 is lost from 5
with formation of 6 (Scheme 4). The solid state structure of 6
5
(ZrOC); 115.2, 99.9, 96.6, 96.4 (h -C5H2); 34.7, 34.3, 34.2, 34.1 [C(CH3)3];
31.8, 31.8, 30.2, 29.2 [C(CH3)3]. 5: d 157.2 (TaOC); 47.1 (NMe2); 39.1
(CH2); 35.8, 34.5 [C(CH3)3]; 31.8, 30.3 [C(CH3)3]. 6: d 163.0 (TaOC);
103.4 (TaC); 44.5 (NMe2); 35.1, 34.5 [C(CH3)3]; 32.0, 30.4 [C(CH3)3].
‡ Crystallographic data: for 2 at 203 K: TiOCl2C31H35, M = 542.43, space
group P21/n (no. 14), a = 12.2422(4), b = 12.6093(4), c = 18.9505(6) Å,
b = 102.517(2)°, V = 2855.8(3) Å3, Dc = 1.262 g cm23, Z = 4. Of the
5004 unique reflections collected (8.00 @ 2q @ 60.94°) with Mo-Ka (l
1
(Fig. 3) shows the ligand to be chelated to the metal via an h -
indenyl interaction, Ta–O–C angle = 122.7(6)°. The metal is
attached to the ipso carbon atom yielding a five-membered
metallacycle ring. The coordination environment about the Ta
metal center in 6 is best described as tbp, with an axial oxygen
1
atom. In the ambient temperature H NMR spectrum of 6 a
2
= 0.71073 Å), the 4070 with Fo > 2 s(Fo2) were used in the final least-
single broad resonance is observed for the Ta–NMe2 protons. At
lower temperatures this signal splits out into four singlets in the
ratio of 2+2+1+1. We interpret the two larger signals as being
due to the two, non-equivalent equatorial Ta–NMe2 groups
undergoing rapid rotation. The remaining signals are due to the
unique axial Ta–NMe2 group that is undergoing restricted
rotation on the NMR timescale. Presumably the higher barrier to
squares refinement to yield R(Fo) = 0.045 and Rw(Fo2) = 0.111; for 4a at
203 K: ZrO2C52H58, M
= 806.26, space group C2/c (No. 15), a =
14.3043(4), b = 10.7900(5), c = 28.522(1) Å, b = 97.875(3)°, V =
4360.7(5) Å3, Dc = 1.228 g cm23, Z = 4. Of the 4399 unique reflections
collected (8.00 @ 2q @ 52.73°) with Mo-Ka (l = 0.71073 Å), 3651 with
2
Fo > 2 s(Fo2) were used in the final least-squares refinement to yield R(Fo)
= 0.055 and Rw(Fo2) = 0.132; for 5 at 203 K: TaON3C29H44, M = 631.64,
¯
1
space group P1 (no. 2), a = 9.6679(5), b = 12.1261(6), c = 13.9575(4) Å,
rotation of the axial group is due to the presence of the h -
a = 86.118(3), b = 72.704(3), g = 67.257(2)°, V = 1438.8(2) Å3, Dc
=
indenyl ring (Fig. 3).
1.458 g cm23, Z = 2. Of the 5428 unique reflections collected (8.00 @ 2q
We thank the National Science Foundation (Grant CHE-
9700269) for financial support of this research.
2
@ 52.75°) with Mo-Ka (l = 0.71073 Å), 5011 with Fo > 2s (Fo2) were
used in the final least-squares refinement to yield R(Fo) = 0.061 and
2
Rw(Fo
) = 0.153. Atom C(32) was refined isotropically. CCDC
182/1465.
1 G. J. P.Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int. Ed.,
1999, 38, 428 and references therein; M.Bochmann, J. Chem. Soc.,
Dalton Trans., 1996, 255; H.-H. Brintzinger, D. Fischer, R. Mülhaupt, B.
Rieger and R. M. Waymouth, Angew. Chem., Int. Ed. Engl., 1995, 34,
1143; P. C. Möhring and N. J. Coville, J. Organomet. Chem., 1994, 479,
1; W. Kaminsky, K. Kulper and H. H. Brintzinger, Angew. Chem., Int.
Ed. Engl., 1985, 24, 507.
2 (a) J. S. Vilardo, M. A. Lockwood, L. G. Hanson, J. R. Clark, B. C.
Parkin, P. E. Fanwick and I. P. Rothwell, J. Chem. Soc., Dalton Trans.,
1997, 3353; (b) J. S. Vilardo, M. G. Thorn, , P. E. Fanwick and I. P.
Rothwell, Chem. Commun., 1998, 2425; (c) M. G. Thorn, J. S. Vilardo,
P. E. Fanwick and I. P. Rothwell, Chem. Commun., 1998, 2427.
3 For related ligands, see: (a) Y.-X. Chen, P.-F. Fu, C. L. Stern and T. J.
Marks, Organometallics, 1997, 16, 5958; (b) K. Kawai, T. Kitahara and
T. Fujita, (Mitsui Petrochemical Ind, Japan), Jpn. Kokai Tokkyo Koho
JP08,325,283, 1996 (Chem. Abstr. 1996, 126, 172048h).
Fig. 3 Molecular structure of 6 showing the atomic numbering scheme.
Selected interatomic distances (Å) and angles (°): Ta–N(2) 1.95(1), Ta–
N(3) 1.95(1), Ta–N(4) 2.005(8), Ta–C(121) 2.285(9), Ta–O(1) 2.025(7);
O(1)–Ta–N(4) 169.9(3), O(1)–Ta–N(2) 90.8(3), O(1)–Ta–N(3) 93.8(4),
O(1)–Ta–C(121) 75.4(3), N(2)–Ta–N(3) 117.6(5), N(2)–Ta–N(4) 92.8(4),
N(3)–Ta–N(4) 92.9(4), C(121)–Ta–N(2) 123.6(4), C(121)–Ta–N(3)
117.7(4), C(121)–Ta–N(4) 94.7(3), Ta–O(1)–C(11) 122.7(6).
4 G. M. Diamond, R. F. Jordan and J. L. Petersen, J. Am. Chem. Soc., 1996,
118, 8024.
5 P. N. Riley, J. R. Parker, P. E. Fanwick and I. P. Rothwell,
Organometallics, 1999, 18, 3579.
Communication 9/06443E
2544
Chem. Commun., 1999, 2543–2544