Vol. 25, No. 14 (2013)
Compd. No.
Synthesis of Pyrazoleacrylic Acids and Their Derivatives 7881
TABLE-2
SPECTROSCOPIC DATA OF PRODUCTSa
IR (νmax, cm-1)b 1H NMR δ in ppm (J in Hz) (solvent)
3000-2500 (br., OH), 1700 and 1675 (C=O), 1645, 1580, 7.60 (m, 5H, Ar), 8.50 (s, 1H, CH=C), 8.92 (s, 1H, H-3), 9.07 (s, 1H,
10
1520, 1490, 1480, 1450, 1265, 1200, 1180, 755, 730.
H-5), (CF3COOH)
3200-2500 (br., OH), 1710 and 1675 (C=O), 1640, 1580, 4.00 (t, 3H, OCH3), 7.20 (d, 2H, J = 9.00, H-3’ and H-5’), 7.60 (d 2H,
11
J-9.00, H-2’ and H-6’ ), 8.59 (s, 1H, CH=C), 9.00 (s, 1H, H-3), 9.03
(s, 1H, H-5), (CF3COOH)
1520, 1380, 1260, 1180, 1015, 825, 725.
3400-2500 (br., NH and OH), 1725 and 1670 (C=O), 7.50 (m, 6H, NH and Ar), 7.95 (s, 1H, H-5), 8.22 (s, 1H, CH=C),
12
1585, 1470, 1445, 1270, 1200, 810, 765, 740, 695.
3200-2500 (br., OH), 1730 (C=O), 1595, 1530 (NO2),
1500, 1400, 1340 (NO2), 1250, 1225, 1110, 950, 855,
815, 765, 750, 680, 670, 655.
(DMSO-d6)
–
13c
1725 and 1710 (C=O), 1630, 1600, 1545, 1500, 1425, 1.30 (t, 3H, J = 7.00, -OCH2CH3), 1.35 (t, 3H, J = 7.00, -OCH2CH3),
1400, 1385, 1345, 1285, 1230, 1200, 1070, 1040, 1030, 4.28 (q, 2H, J = 7.00, -OCH2CH3), 4.38 (q, 2H, J = 7.00, -
14
15
1010, 955, 940, 870, 840, 760, 710, 690, 670.
OCH2CH3), 7.55 (m, 6H, Ar and H-3), 7.86 (s, 1H, H-5), 8.23 (s, 1H,
CH=C), (CDCl3)
1710 (C=O), 1630, 1540, 1510, 1450, 1380, 1340, 1300, 1.30 (t, 3H, J = 7.00, -OCH2CH3), 1.35 (t, 3H, J = 7.00, -OCH2CH3),
1255, 1215, 1200, 1060, 1035, 1020, 1005, 955, 860, 3.83 (s, 3H, OCH3), 4.28 (q, 2H, J = 7.00, -OCH2CH3), 4.38 (q, 2H,
840, 795, 750, 695, 655.
J = 7.00, -OCH2CH3), 6.95 (d, 2H, J = 9.00, H-3’ and H-5’), 7.58 (d,
2H, J = 9.00, H-2’ and H-6’), 7.65 (s, 1H, H-3), 7.83 (s, 1H, H-5),
8.13 (s, 1H, CH=C), (CDCl3)
1730 and 1700 (C=O), 1630, 1590, 1545, 1515 (NO2), 1.32 (t, 3H, J = 7.00, -OCH2CH3), 1.35 (t, 3H, J = 7.00, -OCH2CH3),
1500, 1435, 1365, 1335 (NO2), 1270, 1230, 1205, 1010, 4.30 (q, 2H, J = 7.00, -OCH2CH3), 4.40 (q, 2H, J = 7.00, -
16
950, 855, 750, 685, 660.
OCH2CH3), 7.55-8.10 (m, 3H, H-2’, H-6’ and H-3), 8.15-8.55 (m,
3H, H-3’, H-5’ and H-5), 8.65 (s, 1H, CH=C), (CF3COOH)
7.15-7.75 (m, 11H, arom. and H-3), 8.05 (s, 1H, H-5), 8.58 (s, 1H,
CH=C), (CDCl3)
17
18
2210 (C≡N), 1610, 1600, 1535, 1500, 1450, 1420, 1255,
1245, 1190, 1025, 955, 905, 860, 750, 685, 660.
3.84 (s, 3H, OCH3), 7.00 (d, 2H, J = 9.00, H-3’ and H-5’), 7.20-7.80
(m, 8H, Ar and H-2’ and H-6’ and H-3), 8.28 (s, 1H, H-5), 8.56 (s,
1H, CH=C), (CDCl3-CF3COOH)
2210 (C≡N), 1610, 1545, 1510, 1300, 1245, 1165, 1020,
960, 825, 755, 685, 655.
7.20-7.80 (m, 9H, arom.), 8.38 (s, 1H, H-3), 8.45 (s, 1H, H-5), 8.85
(s, 1H, CH=C), (CF3COOH)
19
20
21
2210 (C≡N), 1610, 1595, 1520, 1500 (NO2), 1440, 1405,
1385, 1335 (NO2), 1255, 1190, 1110, 1020, 950, 860,
770, 750, 690.
1.40 (t, 3H, J = 7.00, -OCH2CH3), 4.35 (q, 2H, J = 7.00, -
OCH2CH3), 7.20-7.80 (m, 6H, Ar and H-3), 8.23 (s, 1H, H-5), 8.75
(s, 1H, CH=C), (CDCl3)
2220 (C≡N), 1710 (C=O), 1610, 1590, 1535, 1505,
1430, 1400, 1385, 1275, 1205, 1010, 950, 870, 760, 725,
665.
1.40 (t, 3H, J = 7.00, -OCH2CH3), 3.88 (s, 3H, OCH3), 4.35 (q, 2H, J
= 7.00, -OCH2CH3), 6.98 (d, 2H, J = 9.00, H-3’ and H-5’), 7.63 (d,
2H, J = 9.00, H-2’ and H-6’), 8.20 (s, 2H, H-3 and H-5), 8.65 (s, 1H,
CH=C), (CDCl3)
2220 (C≡N), 1710 (C=O), 1610, 1520, 1380, 1255,
1205, 1180, 1040, 1010, 870, 830.
1.35 (t, 3H, J = 7.00, -OCH2CH3), 4.30 (q, 2H, J = 7.00, -
OCH2CH3), 7.50 (s, 5H, Ar), 8.17 (s, 1H, H-5), 8.65 (s, 1H, CH=C)
(CDCl3)
22
23
3250 (NH), 2220 (C≡N), 1710 (C=O), 1600, 1530, 1480,
1430, 1260, 1010, 890, 770, 760, 730, 700, 670.
1.30 (t, 3H, J = 7.00, -OCH2CH3), 4.15 (q, 2H, J = 7.00, -
OCH2CH3), 7.75 (s, 1H, H-3), 7.80 (d, 2H, J = 9.00, H-2’ and H-6’),
7.95 (s, 1H, H-5), 8.25 (s, 1H, CH=C), 8.35 (d, 2H, J = 9.00, H-3’
and H-5’) (CDCl3)
2210 (C≡N), 1725 (C=O), 1590, 1510 (NO2), 1395,
1370, 1335 (NO2), 1305, 1240, 1175, 1105, 1025, 950,
855, 750.
7.58 (m, 5H, Ar), 8.35 (s, 1H, H-3), 8.43 (s, 1H, H-5), 8.78 (s, 1H,
CH=C), (CDCl3-CF3COOH)
24
25
26
27c
3300-2500 (br., OH), 2220 (C≡N), 1710 (C=O), 1605,
1590, 1540, 1495, 1375, 1325, 1270, 1220, 1180, 1020,
755, 705.
3.95 (s, 3H, OCH3), 7.12 (d, 2H, J = 9.00, H-2 and H-6), 7.60 (d, 2H,
J = 9.00, H-3 and H-5), 8.48 (s, 1H, H-3), 8.56 (s, 1H, H-5), 8.75 (s,
1H, CH=C), (CF3COOH)
3200-2800 (br., OH), 2220 (C≡N), 1685 (C=O), 1600,
1535, 1510, 1380, 1290, 1220, 1175, 755, 715.
7.71 (m, 6H, Ar and NH), 8.49 (s, 1H, H-5), 9.25 (s, 1H, CH=C),
(CF3COOH)
3290 (br., NH), 3000-2400 (br., OH), 2220 (C≡N), 1695
(C=O), 1600, 1480, 1280, 1265, 1235, 1010, 950, 880,
775, 710, 695, 970.
–
3200 (br., OH), 2230 (C≡N), 1710 (C=O), 1610, 1590,
1550, 1520 (NO2), 1495, 1335 (NO2), 1235, 1080, 850,
750, 695.
aSee Scheme-1; ball strong bands;cnot very soluble in common NMR solvents.
during the reactions. As can be seen from the yields of the
products (Table-1), the condensations worked well with the
carbaldehydes studied. The following "active methylene"
compounds were used: malonic acid, diethyl malonate,
phenylacetonitrile, ethyl cyanoacetate and cyanoacetic acid.
For the compounds (21-23) obtained during these reactions
the yields were low but can be improved by increasing the
reaction time as was the case with compounds (17-19 and 24-27).
The Knoevenagel reaction when carried out between an
aldehyde and malonic acid or cyanoacetic acid in the presence
of pyridine-piperidine catalyst at water bath temperature usu-
ally leads to the corresponding acrylic acid or acrylonitrile,