S.A. Adediran et al. / Bioorg. Med. Chem. Lett. 16 (2006) 869–871
871
3. (a) Lowe, G. Chem. Ind. 1975, 459; (b) Moore, H. W.;
Arnold, M. J. J. Org. Chem. 1983, 48, 3365; (c)
Sheehan, J. C.; Chacko, E.; Commons, T. J.; Lo, Y.
S.; Ponzi, D. R.; Schwabacher, A. J. J. Antibiot. 1984,
37, 1441; (d) Guest, A. W. Tetrahedron Lett. 1986, 27,
The results of Table 1 show that, in general, 3 is a poorer
substrate of the enzymes tested than is 4. It is also
noticeable that, even in cases where enzyme deacylation
is usually rate-determining in the kcat step (P99, PC1,
and OXA-1 b-lactamases), there is no evidence of for-
mation of a tightly bound acyl-enzyme intermediate
(low Km), although this phenomenon is evident in the
parameters for the PC1 and OXA-1 enzymes with 4. It
seems, therefore, that the normal amide group in the
side chain interacts considerably more favorably with
these enzymes. Crystal structures indicate that the nor-
mal amide side chain of b-lactam substrates generally
forms hydrogen bonds with an asparagine carboxamide
NH and a protein backbone CO,12 but modeling sug-
gested that the retro-amide of 3 might also be able to
interact in a favorable way.2 Although the latter may
be true in some cases with acyclic substrates, it does
not appear to be true with b-lactams.
´
3049; (e) Mastalerz, H.; Menard, M. Heterocycles 1991,
32, 93.
4. (a) Southwick, P. L.; Casanova, J., Jr. J. Am. Chem. Soc.
1958, 80, 1168; (b) Southwick, P. L.; Vida, J. A.;
Fitzgerald, B. M.; Lee, S. K. J. Org. Chem. 1968, 33,
2051; (c) Baldwin, J. E.; Chan, M. F.; Gallacher, G.;
Otura, M. Tetrahedron 1984, 40, 4513.
5. Bender, D. R.; Bjeldanes, L. F.; Knapp, D. R.; Rapoport,
H. J. Org. Chem. 1975, 40, 1264.
6. (a) Podlech, J.; Linder, M. R. J. Org. Chem. 1977, 62,
5873; (b) Shiozaki, M.; Ishida, N.; Hiraoka, T.; Maruy-
ama, H. Tetrahedron 1984, 40, 1795.
7. Cimarusti, C. L.; Bonner, D. P.; Breuer, H.; Chang, H. G.;
Fritz, A. W.; Floyd, D. M.; Kissick, T.; Koster, W. H.;
Kronenthal, D.; Massa, F.; Mueller, R. H.; Pluscek, J.;
Slusarchyk, W. A.; Sykes, R. B.; Taylor, M.; Weaver, E.
R. Tetrahedron 1983, 39, 2577.
8. White powder (47% yield); mp > 250 ꢁC; Rf (acid form)
0.24 (ethyl acetate/methanol, 85:15); 1H NMR (D2O) d
3.84 (d, J = 4.0 Hz, 2H), 4.29 (t, J = 4.0 Hz, 1H), 4.45 (s,
2H), 7.36–7.41 (m, 5H); 13C NMR (D2O) d 46.03, 46.36,
56.16, 129.99, 130.28, 131.57, 140.27, 165.74, 170.18; Anal.
Calcd for C, 41.91; H, 3.84; N, 8.89. Found: C, 41.69; H,
3.78; N, 8.98.
9. Breuer, H.; Cimarusti, C. M.; Denzel, T.; Koster, W. H.;
Slusarchyk, W. A.; Treuner, U. D. J. Antimicrob. Chemo-
ther. 1981, 8(Suppl E), 21.
10. (a) Cabaret, D.; Adediran, S. A.; Garcia Gonzalez, M.
J.; Pratt, R. F.; Wakselman, M. J. Org. Chem. 1999,
64, 713; (b) Adediran, S. A.; Cabaret, D.; Pratt, R. F.;
Wakselman, M. Bioorg. Med. Chem. Lett. 1999, 9, 341;
(c) Adediran, S. A.; Cabaret, D.; Drouillat, B.; Pratt,
R. F.; Wakselman, M. Bioorg. Med. Chem. 2001, 9,
1175.
The most interesting feature of the results appears to be
the observation that the retro-amide promotes or allows
partition of a complex of 3 with the P99 b-lactamase,
most likely the acyl-enzyme intermediate, into a more
inert complex (t1/2 = 54 s). This phenomenon is not
unusual with b-lactamases,13 although it is not generally
seen with the simple benzyl side chain. It is possible that
incorporation of a third generation side chain into 3
might generate much more inert complexes and thus
effective inhibitors. Neither 3 nor 4 inhibited the Strep-
tomyces R61 DD-peptidase or Escherichia coli pbp5 to
any significant extent although, again, this situation
may also be changed by the presence of appropriate side
chains, as in aztreonam, for example.14
Acknowledgments
11. Kuzmic, P. Anal. Biochem. 1996, 237, 260.
12. (a) Strynadka, N. C. J.; Adachi, H.; Jensen, S. E.; Johns,
K.; Sielecki, A.; Betzel, C.; Sutoh, K.; James, M. N. G.
Nature 1992, 359, 700; (b) Beadle, B. M.; Trehan, I.;
Focia, P. J.; Shoichet, B. K. Structure 2002, 10, 413.
13. Pratt, R. F. In The Chemistry of b-Lactams; Page, M. I.,
Ed.; Chapman and Hall: London, 1992, Chapter 7.
14. Sykes, R. B.; Bonner, D. P. Am. J. Med. 1985, 78(2A), 2.
15. Stock solutions of 3 and 4 were prepared in DMSO. The
buffer employed for enzyme kinetics was 100 mM MOPS,
pH 7.5, except in the case of the OXA-1 enzyme where
50 mM NaHCO3 was also included. The reaction temper-
ature was 25 ꢁC and reaction solutions contained 5%
DMSO. The enzymes were obtained as previously
described.2
This research was supported by the US National Insti-
tute of Health (R.F.P.). We are grateful to Bristol-
MyersSquibb for the generous gift of 4 (SQ-026324)
and to Dr. Michiyoshi Nukaga of Jyosai International
University, Japan, for the OXA-1 b-lactamase.
References and notes
1. Rice, L. B.; Bonomo, R. A. Drug Resist. Updat. 2000, 3,
178.
2. Cabaret, D.; Adediran, S. A.; Pratt, R. F.; Wakselman, M.
Biochemistry 2003, 42, 6719.