LETTER
PNA-Directed Triple-Helix Formation by N7-Xanthine
1445
poly(rA).28 Thermal melting analysis (Tm = 62.0 °C) and
determination of the stoichiometry of binding confirmed
the expected triplex formation for (15) with poly(rA).
Xanthine oligomer 16 also showed a single cooperative
transition (Tm = 59.5 °C, pH 7.0) that was slightly stabi-
lized at acidic pH (Tm = 66.0 °C, pH 5.5). A Job plot re-
vealed that oligomer 16 binds in a 2:1 fashion with
poly(rA), consistent with the supposition that N7-xanthine
is a suitable mimic of thymine (Figure 2).
empirical methods (PM3), as previously described: Fenyö,
R.; Tímár, Z.; Pálinkó, I.; Penke, B. J. Mol. Struc.–
Theochem. 2000, 496, 101.
(10) Müller, C. E.; Deters, D.; Dominik, A.; Pawlowski, M.
Synthesis 1998, 1428.
(11) Bridson, P. K.; Richmond, G.; Yeh, F. Synth. Commun.
1990, 20, 2459.
(12) Müller, C. E.; Shi, D.; Manning, M. Jr.; Daly, J. W. J. Med.
Chem. 1993, 36, 3341.
(13) Marzilli, L. G.; Epps, L. A.; Sorrell, T.; Kistenmacher, T. J.
J. Am. Chem. Soc. 1975, 97, 3351.
(14) For example: Hoffmann, M. F. H.; Brückner, A. M.; Hupp,
T.; Engels, B.; Diederichsen, U. Helv. Chim. Acta 2000, 83,
2580.
(15) (a) Sanjayan, G. J.; Pedireddi, V. R.; Ganesh, K. N. Org.
Lett. 2000, 2, 2825. (b) Timár, Z.; Bottka, S.; Kovács, L.;
Penke, B. Nucleosides Nucleotides 1999, 18, 1131.
(16) N7- and N9-xanthine acetic acids were separated by
differential solubility in water, the N7-derivative being less
soluble. N7-isomer: white solid, mp 320 °C (dec). 1H NMR
(400 MHz, DMSO): d = 13.30 (br s, 1 H), 11.61 (s, 1 H),
10.91 (s, 1 H), 7.91 (s, 1 H), 4.99 (s, 2 H). 13C NMR (100
MHz, DMSO): d = 169.8, 156.3, 151.9, 149.6, 143.9, 107.3,
47.7. HRMS (EI): m/z calcd for C7H6N4O4: 210.0389; found:
210.0397. N9-isomer: white solid, mp >290 °C (dec). 1H
NMR (400 MHz, DMSO): d = 10.82 (s, 1 H), 7.60 (s, 1 H),
4.84 (s, 2 H). 13C NMR (100 MHz, DMSO): d = 170.1,
158.9, 152.2, 142.8, 138.5, 115.7, 48.4. HRMS (EI): m/z
calcd for C7H6N4O4: 210.0389; found: 210.0451. N3-isomer:
see ref.11
(17) Seitz, O.; Köhler, O. Chem.–Eur. J. 2001, 7, 3914.
(18) Heimer, E. P.; Gallo-Torres, H. E.; Felix, A. M.; Ahmad, M.;
Lambros, T. J.; Scheidl, F.; Meienhofer, J. Int. J. Pept. Res.
1984, 23, 203.
Figure 2 Job plot for Ac-X6-lys-NH2 indicating (PNA)2:DNA triple
helix formation.
(19) Honda, M.; Morita, H.; Nagakura, I. J. Org. Chem. 1997, 62,
8932.
(20) Selected data.
Currently, we are investigating the use of monomers 14
and 5 in the Hoogsteen strand of clamp-PNAs for the
recognition of mixed pyrimidine sequence DNA.
Allyl ester precursor to 5: white solid, mp 168–170 °C (dec).
1H NMR (400 MHz, DMSO): d = 11.53 (br s, 1 H), 10.87 (br
s, 1 H), 7.87–7.20 (m, 10 H), 5.90 (m, 1 H), 5.38–5.09 (m, 4
H), 4.66–4.19 (m) and 4.09 major (s, 7 H), 3.46 major (m,
minor rotamer overlapping with H2O), 3.09 minor (m, major
rotamer overlapping with H2O). HRMS (ESI-TOF): m/z
calcd for sodium adduct C29H28N6O7Na: 595.1917; found:
595.1912.
Acknowledgment
We thank the Natural Sciences and Engineering Research Council
(of Canada) for funding this work. APW is the recipient of an
NSERC Undergraduate Summer Research Award and FW is parti-
ally supported by the Faculty of Graduate Studies, University of
Western Ontario.
Compound 5: off-white solid, mp 162–164 °C (change in
appearance), 205–208 °C (dec). 1H NMR (400 MHz,
DMSO): d = 12.81 (br s, 1 H), 11.58 major and 11.56 minor
(1 H), 10.86 major and 10.84 minor (1 H), 7.88–7.28 (m, 10
H), 5.27 major and 5.07 minor (s, 2 H), 4.34–4.20 (m)and
3.98 major (s, 5 H), 3.43 major (m, minor rotamer
overlapping with H2O), 3.10 minor (m, major rotamer
overlapping with H2O). HRMS (ESI-TOF): m/z calcd for
sodium adduct C26H24N6O7Na: 555.1604; found: 555.1602.
(21) Robins, M. J.; Zou, R.; Guo, Z.; Wnuk, S. J. Org. Chem.
1996, 61, 9207.
(22) Timár, Z.; Kovács, L.; Kovács, G.; Schmél, Z. J. Chem. Soc.,
Perkin Trans. 1 2000, 19.
(23) For PNA: Dueholm, K. L.; Egholm, M.; Behrens, C.;
Christensen, L.; Hansen, H. F.; Vulpius, T.; Petersen, K. H.;
Berg, R. H.; Nielsen, P. E.; Buchardt, O. J. Org. Chem. 1994,
59, 5767.
References
(1) Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O.
Science 1991, 254, 1497.
(2) Nielsen, P. E. Acc. Chem. Res. 1999, 32, 624.
(3) Griffith, M. C.; Risen, L. M.; Greig, M. J.; Lesnik, E. A.;
Sprankle, K. G.; Griffey, R. H.; Kiely, J. S.; Freier, S. M. J.
Am. Chem. Soc. 1995, 117, 831.
(4) Watson, J. D.; Crick, F. H. Nature 1953, 171, 737.
(5) Hoogsteen, K. Acta Crystallogr. 1963, 16, 907.
(6) Hunziker, J.; Priestly, E. S.; Brunar, H.; Dervan, P. B. J. Am.
Chem. Soc. 1995, 117, 2661.
(7) D’Costa, M.; Kumar, V. A.; Ganesh, K. N. J. Org. Chem.
2003, 68, 4439.
(8) Egholm, M.; Christensen, L.; Duholm, K. L.; Buchardt, O.;
Coull, J.; Nielsen, P. E. Nucleic Acids Res. 1995, 23, 217.
(9) Molecular models were constructed using HyperChem 5.1
from existing crystallographic data. The xanthine triplet was
initially geometry optimized using molecular mechanics
(Amber force field) and subsequently refined by use semi-
(24) Data for 6 and 7.
Compound 6 (N9-isomer): white solid, mp 310–331 °C. 1H
NMR (400 MHz, DMSO): d = 12.10 (s, 1 H), 11.66 (s, 1 H),
7.94 (s, 1 H), 4.87 (s, 2 H), 2.76 (sept, 3J = 6.8 Hz, 1 H) 1.40
(s, 9 H), 1.09 (d, 3J = 6.9 Hz, 6 H). 13C NMR (100 MHz,
Synlett 2005, No. 9, 1442–1446 © Thieme Stuttgart · New York