Journal of the American Chemical Society
ARTICLE
to the metal, which is confirmed by several experiments, such as
the catalytic hydrogenation in the absence of substrate, the
different reactivity of mono- and dihydrosilanes, and trapping
with t-BuMe2SiOH. The experiments provide substantial evi-
dence that the ketone interacts with the catalyst by coordinating
to the electron-deficient silylene silicon atom. The resulting
transition state cannot be significantly affected by the distant
and rigid chiral ligand applied in this work, which explains the low
enantioselectivity.
The silylene species opens up two alternative reaction path-
ways. Besides the formation of product, the Lewis acidity of the
silicon atom competitively enables the formation of the enole
tautomer leading to the nondesired silylenolether as side prod-
uct. The inverse kinetic isotope effect observed by Gade et al. is
confirmed by our experiments. Based on this and the absence
of a Hammet correlation when using different para-substitued
diphenylsilanes, the product formation can be assigned as rate-
determining step.
The chiral biscarbene rhodium(I) complexes investigated here
are not well suited for the asymmetric hydrosilylation of ketones
with dihydrosilanes. The transfer of chiral information, however,
could be induced by locating the chirality closer to the generated
silylene silicon atom.
In addition to giving experimental evidence for a silylene-
based mechanism, our studies provide an explanation for the
formation of the side product and show the mechanistic con-
nection between Rh(I)-catalyzed hydrosilylation and dehydro-
coupling.
(3) Gade, L. H.; Cꢀesar, V.; Bellemin-Laponnaz, S. Angew. Chem., Int.
Ed. 2004, 43, 1014–1017.
(4) (a) Ojima, I.; Inaba, S.-I.; Kogure, T.; Nagai, Y. J. Organomet.
Chem. 1973, 55, C7–C8. (b) Chang, L. S.; Corey, J. Y. Organometallics
1989, 8, 1885–1893. (c) Rosenberg, L.; Fryzuk, M. D.; Rettig, S. J.
Organometallics 1999, 18, 958–969. (d) Fryzuk, M. D.; Rosenberg, L.;
Rettig, S. J. Organometallics 1991, 10, 2537–2539.
(5) Goikhman, R.; Milstein, D. Chem.;Eur. J. 2005, 11, 2983–2988.
(6) (a) Calimano, E.; Tilley, T. D. J. Am. Chem. Soc. 2008, 130,
9226–9227. (b) Turculet, L.; Feldman, J. D.; Tilley, T. D. Organome-
tallics 2004, 23, 2488–2502. (c) Feldman, J. D.; Peters, J. C.; Tilley, T. D.
Organometallics 2002, 21, 4065–4075. (d) Peters, J. C.; Feldman, J. D.;
Tilley, T. D. J. Am. Chem. Soc. 1999, 121, 9871–9872. (e) Mitchell, G. P.;
Tilley, T. D. J. Am. Chem. Soc. 1998, 120, 7635–7636. (f) Waterman, R.;
Hayes, P. G.; Tilley, T. D. Acc. Chem. Res. 2007, 40, 712–719.
(7) Riederer, S. K. U.; Gigler, P.; H€ogerl, M. P.; Herdtweck, E.;
Bechlars, B.; Herrmann, W. A.; K€uhn, F. E. Organometallics 2010, 29,
5681–5692.
(8) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
Timmers, F. J. Organometallics 1996, 15, 1518–1520.
(9) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.;
Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organome-
tallics 2010, 29, 2176–2179.
(10) Unfortunately, a GPC measurement was not successful due to
the small molecular weights of the oligomers.
(11) Assignment of the signals was done by 2D-NMR spectroscopy,
such as, HMBC, HMQC, and DEPT.
(12) (a) Penman, K. G.; Kitching, W.; Wells, A. P. J. Chem. Soc.,
Perkin Trans. 1 1991, 721–726. (b) Anet, F. A. L.; Yavari, I. J. Am. Chem.
Soc. 1977, 99, 6986–6991. (c) Anet, F. A. L.; Yavari, I. Tetrahedron Lett.
1975, 16, 1567–1570. (d) Tsarev, V. N.; Wolters, D.; Gais, H.-J.
Chem.;Eur. J. 2010, 16, 2904–2915.
(13) Comte, V.; Balan, C.; Gendre, P. L.; Moise, C. Chem. Commun.
2007, 713–715.
’ ASSOCIATED CONTENT
(14) Curtis, M. D.; Epstein, P. S., . In Advances in Organometallic
Chemistry, Stone, F. G. A., West, R., Eds.; Academic Press: New York,
1981; Vol. 19, pp 213-255.
(15) Gigler, P.; Herrmann, W. A.; K€uhn, F. E. Synthesis 2010, 2010,
1431–1432.
S
Supporting Information. Experimental procedures for
b
the synthesis of E, as well as the Diamond plot of ECy and supplemen-
tary crystallographic data for ECy in CIF format. This material is
(16) Comte, V.; Balan, C.; Gendre, P. L.; Moise, C. Chem. Commun.
2007, 713–715.
(17) Dichloroethane was used instead of dichloromethane, due to its
lower vapor pressure, to exclude changes in concentration.
(18) Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96–103.
’ AUTHOR INFORMATION
Corresponding Author
wolfgangherrmann@ch.tum.de; fritz.kuehn@ch.tum.de
’ ACKNOWLEDGMENT
We are grateful for the financial support of the Wacker Chemie
AG and thank Prof. Peter H€arter for helpful discussions.
’ REFERENCES
(1) (a) Riant, O.; Mostefaï, N.; Courmarcel, J. Synthesis 2004, 2943–
2958. (b) Nishiyama, H.; Itoh, K., . In Catalytic Asymmetric Synthesis 2nd
ed.; Iwao, O., Ed.; Wiley-VCH: New York, 2000; pp 111-143. (c) Ojima,
I.; Li, Z.; Zhu, J., . In The Chemistry of Organic Silicon Compounds,
Rappoport, Z, Apeloig, Y., Eds.; John Wiley & Sons, Ltd.: Chichester,
2003; pp 1687-1792.
(2) (a) Ojima, I.; Nihonyanagi, M.; Kogure, T.; Kumagai, M.;
Horiuchi, S.; Nakatsugawa, K.; Nagai, Y. J. Organomet. Chem. 1975,
94, 449–461. (b) Ojima, I.; Kogure, T.; Kumagai, M.; Horiuchi, S.; Sato,
T. J. Organomet. Chem. 1976, 122, 83–97. (c) Zheng, G. Z.; Chan, T. H.
Organometallics 1995, 14, 70–79. (d) Schneider, N.; Finger, M.;
Haferkemper, C.; Bellemin-Laponnaz, S.; Hofmann, P.; Gade, L. H.
Angew. Chem., Int. Ed. 2009, 48, 1609–1613. (e) Schneider, N.; Finger,
M.; Haferkemper, C.; Bellemin-Laponnaz, S.; Hofmann, P.; Gade, L. H.
Chem.;Eur. J. 2009, 15, 11515–11529.
1596
dx.doi.org/10.1021/ja110017c |J. Am. Chem. Soc. 2011, 133, 1589–1596