1050
yield. The reaction using α,β-unsaturated aldehyde (6f) or aliphatic aldehyde (6g) proceeded in low
enantioselectivity.
Next, we examined an asymmetric amplification. A slightly positive non-linear relationship was
observed between the enantiomeric excess of the product and the enantiomeric excess of the ligand 4a in
the addition reaction (Fig. 2).
Fig. 2. Correlation between % ee of 4a and % ee of (R)-1-phenylpropanol
In conclusion, this paper is the first report of high enantiomeric excess that was obtained in the reaction
of diethylzinc to aromatic aldehyde using C2-dimeric aminoalcohols 4a and 4b bearing primary alcohols.
The good enantioselectivity apparently arises from their stereostructural rigidity and bulkiness.
References
1. Tomioka, K. Synthesis 1990, 541–549, and references cited therein.
2. (a) Noyori, R.; Kitamura, M. Angew. Chem, Int. Ed. Engl. 1991, 30, 49–69. (b) Soai, K.; Niwa, S. Chem. Rev. 1992, 92,
833–856, and references cited therein.
3. (a) Wilken, J.; Gröger, H.; Kossenjans, M.; Martens, J. Tetrahedron: Asymmetry 1997, 8, 2761–2771. (b) Cicchi, S.;
Crea, S.; Goti, A.; Brandi, A. Tetrahedron: Asymmetry 1997, 8, 293–301. (c) Mino, T.; Oishi, K.; Yamashita, M. Synlett
1998, 965–966. (d) Bastin, S.; Delebecque, N.; Agbossou, F.; Brocard, J.; Pélinski, L. Tetrahedron: Asymmetry 1999, 10,
1647–1651. (e) Nugent, W. A. Chem. Commun. 1999, 1369–1370.
4. (a) Niwa, S.; Soai, K. J. Chem. Soc., Perkin Trans. 1 1991, 2717–2720. (b) Conti, S.; Falorni, M.; Giacomelli, G.;
Soccolini, F. Tetrahedron 1992, 48, 8993–9000. (c) Pini, D.; Mastantuono, A.; Uccello-Barretta, G.; Iuliano, A.; Salvadori,
P. Tetrahedron 1993, 49, 9613–9624.
5. (a) Rosini, C.; Franzini, L.; Pini, D.; Salvadori, P. Tetrahedron: Asymmetry 1990, 1, 587–588. (b) Schmidt, B.; Seebach,
D. Angew. Chem., Int. Ed. Engl. 1991, 30, 99–101. (c) Prasad, K. R. K.; Joshi, N. N. Tetrahedron: Asymmetry 1996, 7,
1957–1960. (d) Zhang, F.-Y.; Chan, A. S. C. Tetrahedron: Asymmetry 1997, 8, 3651–3655. (e) Kitajima, H.; Ito, K.; Aoki,
Y.; Katsuki, T. Bull. Chem. Soc. Jpn. 1997, 70, 207–217. (f) Omote, M.; Kominato, A.; Sugawara, M.; Sato, K.; Ando, A.;
Kumadaki, I. Tetrahedron Lett. 1999, 40, 5583–5585.
6. (a) Taniguchi, N.; Uemura, M. Synlett, 1997, 51–53. (b) Taniguchi, N.; Hata, T.; Uemura, M. Angew. Chem., Int. Ed. Engl.
1999, 38, 1232–1235.
7. Yanada, R.; Negoro, N.; Okaniwa, M.; Miwa, Y.; Taga, T.; Yanada, K.; Fujita, T. Synlett, 1999, 537–540.
1
8. Compound 4a: H NMR (CDCl3) δ: 0.83 (d, 6H, J=6.6 Hz), 1.01 (d, 6H, J=6.6 Hz), 1.75 (ddd, 2H, J=6.6, 6.6, 7.6 Hz),
2.42 (ddd, 2H, J=4.3, 7.3, 7.6 Hz), 3.76 (dd, 2H, J=7.3, 11.9 Hz), 3.84 (dd, 2H, J=4.3, 11.9 Hz), 4.09 (s, 2H), 4.27 (s, 2H),
7.13–7.25 (m, 10H).
9. Compound 4b: 1H NMR (CDCl3) δ: 0.82 (d, 6H, J=6.9 Hz), 1.00 (d, 6H, J=6.6 Hz), 1.73 (m, 2H), 2.40 (ddd, 2H, J=4.3,
4.6, 7.6 Hz), 3.74 (dd, 2H, J=4.6, 11.9 Hz), 3.77 (s, 6H), 3.82 (dd, 2H, J=4.3, 11.9 Hz), 4.00 (s, 2H), 4.23 (s, 2H), 6.78 (d,
4H, J=8.9 Hz), 7.08 (d, 4H, J=8.9 Hz).
10. Goldfuss, B.; Houk, K. N. J. Org. Chem. 1998, 63, 8998–9006.
11. (a) Noyori, R.; Suga, S.; Kawai, K.; Okada, S.; Kitamura, M.; Oguni, N.; Hayashi, M.; Kaneko, T.; Matsuda, Y. J.
Organomet. Chem. 1990, 382, 19–37. (b) Tanner, D.; Kornø, H. T.; Guijarro, D.; Andersson, P. G. Tetrahedron 1998, 54,
14213–14232.