Inorganic Chemistry
Article
It is well-known that chlorinated organics are observed in
ClO2-only (ECF) bleaching plants, and Ni and co-workers28,29
suggested that addition of chlorite to the process reduces the
concentration of HOCl and therefore reduces the undesirable
chlorinated byproducts. Their explanation for the effect as well
as the pioneering work of Kolar and co-workers27 are validated
by the present studies using vinylbenzene substrates in place of
the complex mixture of substrates in lignin. The successful
quantitative modeling by the detailed mechanism of Figure 11
puts the earlier proposals on firm mechanistic grounds, at least
for reactions involving oxidation of double bonds. The model
quantitatively explains the formation of chlorinated hydro-
carbons in chlorine dioxide oxidations, produced, for example,
in a variety applications including water treatment and pulp
bleaching, by accounting for the formation of HOCl rather than
attributing that formation to reactions of substrate with
chlorine impurities.83,93−96
This work also supports a less commonly invoked pathway
for chlorine dioxide oxidations in which radical addition/
elimination occurs in lieu of an initial one-electron outer-sphere
electron-transfer reaction. The probability of the former
pathway, which is closely analogous to certain reactions of
peroxyl radicals, is significantly enhanced when the inter-
mediate radical adduct has special stability, as in the case of
styrene and its derivatives studied here.
graduates grant. The authors gratefully acknowledge the
University of Florida for supporting this research.
REFERENCES
(1) Holst, G. Sven. Papperstidn. 1945, 48.
(2) Flis, I. E. Zh. Fiz. Khim. 1958, 32.
■
(3) Troitskaya, N. V.; Mishchenko, K. P.; Flis, I. E. Russ. J. Phys.
Chem. 1959, 33.
(4) Dodgen, H.; Taube, H. J. Am. Chem. Soc. 1949, 71, 2501−2504.
́
(5) Hoigne, J.; Bader, H. Water Res. 1994, 28, 45−55.
(6) Alternative Disinfectants and Oxidants Guidance Manual, EPA
#815-R-99−014; U.S. Environmental Protection Agency: Washington,
DC, 1999.
(7) Latshaw, C. L. Tappi 1994, 163−166.
(8) Gordon, G.; Rosenblatt, A. A. Ozone: Sci. Eng. 2005, 203−107.
(9) Svenson, D. R.; Jameel, H.; Chang, H.; Kadla, J. F. J. Wood Chem.
Technol. 2006, 201−213.
(10) Sharp, R. J.; Roberts, A. G. J. Chem. Technol. Biotechnol. 2006,
1612−1625.
(11) Callahan, K.; Beck, N.; Duffield, E.; Shin, G.; Meschke, J. J.
Occup. Environ. Hyg. 2010, 7, 529−534.
(12) Davies, A.; Pottage, T.; Bennett, A.; Walker, J. J. Hosp. Infect.
2011, 77, 199−203.
(13) Lim, M. Y.; Kim, J.-M.; Ko, G. Water Res. 2010, 44, 3243−3251.
(14) Srinivasan, A.; Bova, G.; Ross, T.; Mackie, K.; Paquette, N.;
Merz, W.; Perl, T. M. Infect. Control Hosp. Epidemiol. 2003, 24, 575−
579.
We are presently investigating the use of mechanisms based
on the overall scheme in Figure 9 to provide quantitative
models for chlorite and/or chlorine dioxide oxidations of a
variety of other substrates, such as sulfides, phenols, and related
biological molecules. Other substrates will of course require the
introduction of additional steps for ClO2 reactions and
reactions of other chlorine intermediates with substrate to
account for product distributions and kinetics. It is encouraging
that the highly interdependent chemistry of multiple chlorine
oxidation states in complex mixtures can be modeled
quantitatively by a series of known reactions.
(15) Walsh, T. R.; Toleman, M. A. J. Antimicrob. Chemother. 2012,
67, 1−3.
(16) Pogue, J. M.; Mann, T.; Barber, K. E.; Kaye, K. S. Expert Rev.
Anti-Infect. Ther. 2013, 11, 383−393.
(17) Gordon, G.; Kieffer, R. G.; Rosenblatt, D. H. The Chemistry of
Chlorine Dioxide. In Progress in Inorganic Chemistry; Lippard, S. J., Ed.;
John Wiley & Sons, Inc.: Hoboken, NJ, 1972; Vol. 15, pp 202−286.
(18) Rav-Acha, C. Water Res. 1984, 18, 1329−1341.
(19) Lehtimaa, T.; Kuitunen, S.; Tarvo, V.; Vuorinen, T.
Holzforschung 2010, 64, 555−561.
(20) Tarvo, V.; Lehtimaa, T.; Kuitunen, S.; Alopaeus, V.; Vuorinen,
T.; Aittamaa, J. Ind. Eng. Chem. Res. 2009, 48, 6280−6286.
(21) Wang, L.; Margerum, D. W. Inorg. Chem. 2002, 41, 6099−6105.
(22) Jia, Z.; Margerum, D. W.; Francisco, J. S. Inorg. Chem. 2000, 39,
2614−2620.
ASSOCIATED CONTENT
* Supporting Information
■
S
(23) Peintler, G.; Nagypal
2954−2958.
(24) Yin, G.; Ni, Y. Can. J. Chem. Eng. 1998, 76, 921−926.
(25) Kormanyos, B.; Nagypal, l.; Peintler, G.; Horvath, A. K. Inorg.
Chem. 2008, 47, 7914−7920.
́
, I.; Epstein, I. J. Phys. Chem. 1990, 94,
Included here: introductory material, error analysis, HOCl/
ClO2− reaction, oxidation of styrene and 4-styrenesulfonic acid,
reaction selectivity and epoxidation mechanism, rate constant
correlation matrices. This material is available free of charge via
́
́
́
(26) Volk, C. J.; Hofmann, R.; Chauret, C.; Gagnon, G. A.; Ranger,
G.; Andrews, R. C. J. Environ. Sci. Eng. 2002, 323−330.
(27) Kolar, J. J.; Lindgren, B. O.; Pettersson, B. Wood Sci. Technol.
1983, 17, 117−128.
(28) Ni, Y.; Kubes, G. J.; Heiningen, A. R. P. v. Nord. Pulp Pap. Res. J.
1993, 8, 350−352.
(29) Ni, Y.; Kubes, G. J.; Heiningen, A. R. P. v. Nord. Pulp Pap. Res. J.
1992, 7, 200−204.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(30) Pettersen Roger, C. Chem. Solid Wood 1984, 207, 57−126.
(31) Krapcho, A. P. Organic Preparations and Procedures International
2006, 38, 177−216.
ACKNOWLEDGMENTS
■
(32) Lindgren, B. O.; Nilsson, T.; Husebye, S.; Mikalsen, Ø.;
Leander, K.; Swahn, C.-G. Acta Chem. Scand. 1973, 27, 888.
(33) Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567−569.
(34) Babu, B. R.; Balasubramaniam, K. K. Org. Prep. Proced. Int. 1994,
26, 123−125.
This Paper was inspired by H. Taube, who first investigated
chlorine dioxide as a student at the Univ. of Saskatchewan
(Spinks, J. W. T.; Taube, H. J. Am. Chem. Soc. 1937, 59, 1155−
115) and mentioned its potential practical usefulness to one of
us (D.E.R.) 31 years ago. Since that time, Taube’s prediction
has become a reality, and, among its many applications,
chlorine dioxide has significantly reduced chlorinated organic
pollution in modern wood pulp bleaching and has been used to
destroy anthrax. J.R. was supported by a National Science
Foundation International Research Experiences for Under-
(35) Launer, H. F.; Tomimatsu, Y. Anal. Chem. 1959, 31, 1385−
1390.
(36) Hefti, H. Text. Res. J. 1960, 30, 861−867.
(37) Higginbotham, R. S.; Leigh, R. A. J. Text. Inst., Proc. 1962, 53,
312−319.
(38) Abdel-Halim, E. S. Carbohydr. Polym. 2012, 90, 316−321.
6726
dx.doi.org/10.1021/ic500512e | Inorg. Chem. 2014, 53, 6715−6727