Journal of Medicinal Chemistry p. 953 - 970 (2000)
Update date:2022-08-03
Topics:
Genin, Michael J.
Allwine, Debra A.
Anderson, David J.
Barbachyn, Michael R.
Emmert, D. Edward
Garmon, Stuart A.
Graber, David R.
Grega, Kevin C.
Hester, Jackson B.
Hutchinson, Douglas K.
Morris, Joel
Reischer, Robert J.
Ford, Charles W.
Zurenko, Gary E.
Hamel, Judith C.
Schaadt, Ronda D.
Stapert, Douglas
Yagi, Betty H.
A series of new nitrogen-carbon-linked (azolylphenyl)oxazolidinone antibacterial agents has been prepared in an effort to expand the spectrum of activity of this class of antibiotics to include Gram-negative organisms. Pyrrole, pyrazole, imidazole, triazole, and tetrazole moieties have been used to replace the morpholine ring of linezolid (2). These changes resulted in the preparation of compounds with good activity against the fastidious Gram- negative organisms Haemophilus influenzae and Moraxella catarrhalis. The unsubstituted pyrrolyl analogue 3 and the 1H-1,2,3-triazolyl analogue 6 have MICs against H. influenzae = 4 μg/mL and M. catarrhalis = 2 μg/mL. Various substituents were also placed on the azole moieties in order to study their effects on antibacterial activity in vitro and in vivo. Interesting differences in activity were observed for many analogues that cannot be rationalized solely on the basis of sterics and position/number of nitrogen atoms in the azole ring. Differences in activity rely strongly on subtle changes in the electronic character of the overall azole systems. Aldehyde, aldoxime, and cyano azoles generally led to dramatic improvements in activity against both Gram-positive and Gram-negative bacteria relative to unsubstituted counterparts. However, amide, ester, amino, hydroxy, alkoxy, and alkyl substituents resulted in no improvement or a loss in antibacterial activity. The placement of a cyano moiety on the azole often generates analogues with interesting antibacterial activity in vitro and in vivo. In particular, the 3-cyanopyrrole, 4-cyanopyrazole, and 4-cyano-1H-1,2,3- triazole congeners 28, 50, and 90 had S. aureus MICs ≤ 0.5-1 μg/mL and H. influenzae and M. catarrhalis MICs = 2-4 μg/mL. These analogues are also very effective versus S. aureus and S. pneumoniae in mouse models of human infection with ED50s in the range of 1.2-1.9 mg/kg versus 2.8-4.0 mg/kg for the eperezolid (1) control.
View MoreContact:
Address:No.89,Xinhua Road, Langfang City,Hebei China
Contact:18710867521(wechat)
Address:Rm10516,Galaxy Tech Building #2,No.25 Tangyan Rd,Hi-Tech Zone,Xi'an, China
website:http://www.alwaychem.com
Contact:+86-532-8586-4000, 8586-5000
Address:NO.51, TAIPING ROAD, QINGDAO, CHINA. 266001
A.M FOOD CHEMICAL CO., LIMITED
Contact:86-531-87100375
Address:20Floor,Bblock,1Building,pharma-valley,Jinan,China
Shanghai Xinda Pharmaceuticals Co., Ltd.
Contact:86-21-33692333-8008
Address:999 Linxian Road, Jinshan Industrial Park, Shanghai, China
Doi:10.1002/jccs.200000004
(2000)Doi:10.1021/ja01049a002
(1969)Doi:10.1371/journal.pone.0136228
(2015)Doi:10.1016/j.tet.2016.02.033
(2016)Doi:10.1016/S0040-4020(00)00069-7
(2000)Doi:10.1016/S0957-4166(99)00589-3
(2000)