C O M M U N I C A T I O N S
previous reports11 suggest that FI Catalysts are capable of producing
novel polymers that are unobtainable from conventional Ziegler-
Natta catalysis.
Acknowledgment. We would like to thank Dr. M. Mullins for
his fruitful discussions and suggestions.
Supporting Information Available: Synthesis and characterization
of the complexes, polymer synthesis, and analysis data (GPC, DSC,
NMR) (PDF). This material is available free of charge via the Internet
References
Figure 3. Plots of Tm vs polymerization temperature with 1-3/MAO.
(1) (a) Kaminsky, W. Catal. Today 1994, 20, 257-271. (b) Brintzinger, H.
H.; Fischer, D.; Mu¨lhaupt, R.; Rieger, B.; Waymouth, R. M. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1143-1170. (c) Britovsek, G. J. P.; Gibson,
V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 428-447.
(2) (a) Scollard, J. D.; McConville, D. H. J. Am. Chem. Soc. 1996, 118,
10008-10009. (b) Killian, C. M.; Tempel, D. J.; Johnson, L. K.;
Brookhart, M. J. Am. Chem. Soc. 1996, 118, 11664-11665. (c) Liang, L.
C.; Schrock, R. R.; Davis, W. M.; McConville, D. H. J. Am. Chem. Soc.
1999, 121, 5797-5798. (d) Tshuva, E. Y.; Goldberg, I.; Kol, M. J. Am.
Chem. Soc. 2000, 122, 10706-10707. (e) Jayaratne, K. C.; Sita, L. R. J.
Am. Chem. Soc. 2000, 122, 958-959.
(3) (a) Doi, Y.; Suzuki, S.; Soga, K. Macromolecules 1986, 19, 2896-2900.
(b) Hasan, T.; Ioku, A.; Nishii, K.; Shiono, T.; Ikeda, T. Macromolecules
2001, 34, 3142-3145.
(4) Mitani, M.; Yoshida, Y.; Mohri, J.; Tsuru, K.; Ishii, S.; Kojoh, S.; Matsugi,
T.; Saito, J.; Matsukawa, N.; Matsui, S.; Nakano, T.; Tanaka, H.; Kashiwa,
N.; Fujita, T. WO Pat. 01/55231 A1, 2001; Chem. Abstr. 2001, 135,
137852.
(5) (a) Saito, J.; Mitani, M.; Mohri, J.; Yoshida, Y.; Matsui, S.; Ishii, S.;
Kojoh, S.; Kashiwa, N.; Fujita, T. Angew. Chem., Int. Ed. 2001, 40, 2918-
2920. (b) Saito, J.; Mitani, M.; Mohri, J.; Ishii, S.; Yoshida, Y.; Matsugi,
T.; Kojoh, S.; Kashiwa, N.; Fujita, T. Chem. Lett. 2001, 576-577. (c)
Kojoh, S.; Matsugi, T.; Saito, J.; Mitani, M.; Fujita, T.; Kashiwa, N. Chem.
Lett. 2001, 822-823. (d) Saito, J.; Mitani, M.; Onda, M.; Mohri, J.; Ishii,
S.; Yoshida, Y.; Nakano, T.; Tanaka, H.; Matsugi, T.; Kojoh, S.; Kashiwa,
N.; Fujita, T. Macromol. Rapid Commun. 2001, 22, 1072-1075. (e)
Mitani, M.; Mohri, J.; Yoshida, Y.; Saito, J.; Ishii, S.; Tsuru, K.; Matsui,
S.; Furuyama, R.; Nakano, T.; Tanaka, H.; Kojoh, S.; Matsugi, T.;
Kashiwa, N.; Fujita, T. J. Am. Chem. Soc. 2002, 124, 3327-3336.
(6) (a) Tian, J.; Hustad, P. D.; Coates, G. W. J. Am. Chem. Soc. 2001, 123,
5134-5135. (b) Hustad, P. D.; Tian, J.; Coates, G. W. J. Am. Chem. Soc.
2002, 124, 3614-3621.
afforded syn-PP with an exceptionally high Tm of 156 °C ([rr] 94%),
which probably represents the highest value reported to date for
not only monodisperse syn-PPs but also highly syn-PPs obtained
with exquisitely designed group 4 metallocene catalysts.9,10 On the
other hand, complexes 24,5 and 36 previously introduced as catalysts
for highly syndiospecific living propylene polymerization, provided
lower tacticity polymers with much lower Tm’s (135-141 °C, Table
1, entries 6, 7, 9, 10). These results show that complex 1 possesses
a great potential for syndiospecific living propylene polymerization.
Surprisingly, at 50 °C, complex 1 initiated living propylene
polymerization and furnished narrow polydispersity syn-PPs with
very high Tm’s (150, 149 °C, Table 1, entries 4 and 5 and Figure
3), which is of great significance because generally chain-end
control rapidly loses stereoregulating ability at elevated tempera-
tures.
In contrast, at 50 °C, complexes 2 and 3 produced syn-PPs having
Tm’s below 130 °C (Table 1, entries 8 and11 and Figure 3), with
broadened polydispersities (Mw/Mn; 2, 1.59; 3, 3.19). These results
indicate that the R1 substituent has an effect on syndiospecificity
of fluorinated Ti-FI Catalysts.
To gain further information on the effect of R1 substituent, we
synthesized complex 4 having a hydrogen atom at R1 position and
investigated its potential as a propylene polymerization catalyst.
Complex 4 showed considerably higher activity than 2 and 3,
probably due to the structurally open nature of the complex (entry
12), and much lower syndiospecificity (rr 43%, no Tm). These results
suggest that the steric bulk of the R1 substituent plays a key role in
determining the syndiospecificity of the polymerization. Although,
at present, mechanistic details for propylene polymerization with
fluorinated FI Catalysts are not clear, it is obvious that the ligand
structure of the catalyst has a dramatic effect on polymerization
behavior and that sterically bulky substituents at the R1 position
result in a highly controlled syndiospecific polymerization though
chain-end control. Therefore, we have given the name “ligand-
directed chain-end control” to our newly discovered highly
controlled syndiospecific propylene polymerization that enables us
to have highly syn-PPs with extremely high Tm’s. In summary, a
new titanium complex with fluorine- and trimethylsilyl-containing
phenoxy-imine chelate ligands has been introduced, which forms
highly syndiotactic monodisperse PPs with high Tm’s even at
elevated temperatures. The results described herein along with our
(7) Lamberti, M.; Pappalardo, D.; Zambelli, A.; Pellecchia, C. Macromolecules
2002, 35, 658-663.
(8) This mechanism is also operative in propylene polymerization with
complexes 2 and 3. See refs 5b and d, 6, and 7.
(9) (a) Veghini, D.; Henling, L. M.; Burkhardt, T. J.; Bercaw, J. E. J. Am.
Chem. Soc. 1999, 121, 564-573. (b) Grisi, F.; Longo, P.; Zambelli, A.;
Ewen, J. A. J. Mol. Catal. A: Chem. 1999, 140, 225-233.
(10) Obviously, the Tm’s of monodisperse syn-PPs arising from fluorinated FI
Catalysts are higher than the values expected from the syndiotacticity of
the polymers. (For example; syn-PP formed with Ph2C(Cp, 2,7-di-t-Bu-
Flu)ZrCl2, [rr] 95%, Tm 148 °C; under the same DSC measurement
conditions. Shiomura, T.; Kohno, M.; Inoue, N.; Yokote, Y.; Akiyama,
M.; Asanuma, T.; Sugimoto, R.; Kimura, S.; Abe, M. Catalyst Design
for Tailor-Made Polyolefins; Kodansha and Elsevier: Tokyo and Am-
sterdam, 1994; pp 327-338). The difference probably originates from
the microstructures or unimodality of the polymers. Detailed investigations
are underway.
(11) (a) Fujita, T.; Tohi, Y.; Mitani, M.; Matsui, S.; Saito, J.; Nitabaru, M.;
Sugi, K.; Makio, H.; Tsutsui, T. Eur. Patent, EP-0874005, 1998; Chem.
Abstr. 1998, 129, 331166. (b) Matsui, S.; Mitani, M.; Saito, J.; Tohi, Y.;
Makio, H.; Matsukawa, N.; Takagi, Y.; Tsuru, K.; Nitabaru, M.; Nakano,
T.; Tanaka, H.; Kashiwa, N.; Fujita, T. J. Am. Chem. Soc. 2001, 123,
6847-6856. (c) Saito, J.; Mitani, M.; Matsui, S.; Kashiwa, N.; Fujita, T.
Macromol. Rapid Commun. 2000, 21, 1333-1336. (d) Ishii, S.; Saito, J.;
Mitani, M.; Mohri, J.; Matsukawa, N.; Tohi, Y.; Matsui, S.; Kashiwa,
N.; Fujita, T. J. Mol. Catal. A 2002, 179, 11-16.
JA026229R
9
J. AM. CHEM. SOC. VOL. 124, NO. 27, 2002 7889