Please do not adjust margins
Organic & Biomolecular Chemistry
Page 3 of 5
DOI: 10.1039/C7OB02431B
Journal Name
COMMUNICATION
Reaction opens up gateways for the development of catalytic
and mild routes for the synthesis of terminal alkynes. Further
work in this direction is under progress.
Authors are thankful to DRDO for financial support
(ERIP/ER/1203055/M/01/1471). DN is thankful to Director,
CFEES, DRDO, New Delhi and Department of Chemistry, BHU
for providing laboratory facility. KCB and TG are thankful to
CSIR and UGC for fellowships, respectively.
Fig
.
2. ORTEP diagram of 3b.
Conflicts of interest
H
There are no conflicts to declare.
Br
Br
N
Cl
Cl
N
1a
Notes and references
A
1
The Chemistry of Carbon-Carbon Triple bond; S. Patai, Ed.;
Wiley: New-York 1978.
Na2S
Br2
1,2-shift
2
(a) S. M. A. Sohel and R.-S. Liu, Chem. Soc. Rev., 2009, 38
2269; (b) D. Falcone, J. Li, A. Kale and G. B. Jones, Bioorg.
Med. Chem. Lett., 2008, 18, 934; (c) J. Boukouvalas, S. C
and B. Ndzi, Tetrahedron Lett., 2007, 48 105; (d) F.
,
NaSBr + NaBr
ôté
3a
,
Cl
N
Lehmann, L. Lake, E. A. Currier, R. Olsson, U. Hacksell and K.
Luthman, Eur. J. Med. Chem., 2007, 42, 276; (e) F. Mitzel, S.
FitzGerald, A. Beeby and R. Faust, Eur. J. Org. Chem., 2004,
1136.
Scheme 3. Plausible Mechanism.
3
(a) B. M. Trost, J. D. Sieber, W. Q. Qian, R. Dhawan and Z. T.
Ball, Angew. Chem. Int. Ed., 2009, 48, 5478; (b) T. Dutta, K. B.
Woody and M. D. Watson, J. Am. Chem. Soc., 2008, 130, 452;
(c) H. Shimizu, K. Fujimoto, M. Furusyo, H. Maeda, Y. Nanai,
K. Mizuno and M. Inouye, J. Org. Chem., 2007, 72, 1530; (d) J.
H. Moon, W. McDaniel, P. MacLean and L. F. Hancock,
Angew. Chem. Int. Ed., 2007, 46, 8223; (e) L. B. Sessions, B. R.
Cohen and R. B. Grubbs, Macromolecules, 2007, 40, 1926.
(a) F. Amblard, J. H. Cho and R. F. Schinazi, Chem. Rev., 2009,
109, 4207; (b) M. Meldal and C. W. Tornøe, Chem. Rev.,
2008, 108, 2952.
were less reactive than hetero aromatic analogues and
proceeded at 40 °C in 14-18h affording terminal alkynes 3l-
3r17a,22 in 42-68% respectively. Phenyl ring bearing electron-
donating groups were relatively more reactive than those with
electron-withdrawing groups and afforded better yields of
terminal alkynes.
4
5
A plausible mechanism based on FBW rearrangement is as
depicted in scheme 3.23,24 Initially, sodium sulphide anion
attacks as nucleophile on one of bromine atom of gem-
(a) R. Chinchilla and C. Nájera, Chem. Rev., 2007, 107, 874;
dibromoalkenes
1
followed by cleavage of another C-Br bond
. The carbene subsequently
(b) L. Yin and J. Liebscher, Chem. Rev., 2007, 107, 133; (c) R.
R. Tykwinski, Angew. Chem. Int. Ed., 2003, 42, 1566; (d) E.
Negishi and L. Anastasia, Chem. Rev., 2003, 103, 1979.
(a) T. Mahdi and D. W. Stephan, Angew. Chem. Int. Ed., 2013,
52, 12418; (b) N. T. Patil, P. G. V. V. Lakshmi and V. Singh,
Eur. J. Org. Chem., 2010, 4719; (c) D. Ye, X. Zhang, Y. Zhou, D.
Zhang, L. Zhang, H. Wang, H. Jiang and H. Liu, Adv. Synth.
Catal., 2009, 351, 2770.
(a) C. Che, H. Zheng and G. Zhu, Org. Lett., 2015, 17, 1617;
(b) M. Murai, R. Hatano, S. Kitabata and K. Ohe, Chem.
Commun., 2011, 47, 2375.
Y. Li, D. Shi, P. Zhu, H. Jin, S. Li, F. Mao and W. Shi,
Tetrahedron Lett., 2015, 56, 390.
to afford vinylene carbene
A
A
undergoes rearrangement leading to terminal alkyne. NaSBr
and NaBr react together to regenerate Na2S along with
formation of bromine which can exist in equilibrium. To rule
out the possibility of Na2S acting as a base, the reaction of
(Z)2-bromovinylbenzene25 was examined for the synthesis of
terminal alkyne under optimized reaction condition (Scheme
4). However reaction failed to proceed and starting material
was recovered. This further ruled out Na2S acting as base.
In summary, we have developed a catalytic route for the
synthesis of terminal alkynes from gem-dibromoalkenes. This
route is superior over other methods because of cheap and
commercial availability of reagent. The reactions proceeds
without base at 20/40 oC under open atmosphere in good
yields. Different heteroaromatic, aromatic and aliphatic gem-
dibromoalkenes afforded corresponding terminal alkynes from
this method.
6
7
8
9
(a) D. Habrant, V. Rauhala and A. M. P. Koskinen, Chem. Soc.
Rev., 2010, 39, 2007; (b) A. Orita and J. Otera, Chem. Rev.,
2006, 106, 5387.
10 (a) E. W. Colvin and B. J. Hamill, J. Chem. Soc. Perkin Trans. 1,
1977, 869; (b) E. W. Colvin and B. J. Hamill, J. Chem. Soc.
Chem. Commun., 1973, 151.
11 (a) J. C. Gilbert and U. Weerasooriya, J. Org. Chem., 1979, 44
,
4997; (b) D. Seyferth, R. S. Marmor and P. Hilbert, J. Org.
Chem., 1971, 36, 1379; (c) D. Seyferth and R. S. Marmor,
Tetrahedron Lett., 1970, 11, 2493.
Na2S.9H2O (0.5 eq.)
12 (a) M. Beshai, B. Dhudshia, R. Mills and A. N. Thadani,
Tetrahedron Lett., 2008, 49, 6794; (b) P. Michel, D. Gennet
and A. Rassat, Tetrahedron Lett., 1999, 40, 8575.
X
Br
DMSO, 40 oC, 24 h
Scheme 4. Reaction of 1-bromovinylbenzene with Na2S.9H2O
.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins