692
C. J. McIntyre et al. / Bioorg. Med. Chem. Lett. 12 (2002) 689–692
Table 3. Kinase selectivity for compound 24e
3. (a) Physicians Desk Reference, 54th ed.; Medical Econom-
ics: Montvale, 2000; pp 927 and 1413. (b) Seymour, H. E.;
Worsley, A.; Smith, J. M.; Thomas, S. H. L. Br. J. Clin.
Pharmacol. 2001, 51, 201. (c) Keystone, E. C. Rheu. Dis. Clin.
of North Am. 2001, 27, 427.
Kinase p38
c-RafJNK2
a1 JNK2a2
LCK
IC50
2.6 nM 29%@5000 nM 820 nM 1400 nM 22%@15,000 nM
4. For review see: Boehm, J. C.; Adams, J. L. Exp. Opin.
Ther. Pat. 2000, 10, 25.
remarkable tolerance in the 6-position for a range of
substituents, each possessing distinctive structural and
electronic features. One of the first compounds prepared
in this series, the morpholine derivative 24e, was tested
to evaluate its selectivity for p38 MAPK over several
other protein kinases. These results are illustrated in
Table 3.16
5. Owens, R. J.; Lumb, S. In Novel Cytokine Inhibitors; Higgs,
G. A., Henderson, B., Eds.; Birkhauser: Basel, 2000; p 201.
6. (a) Lisnock, J. M.; Tebben, A.; Frantz, B.; O’Neill, E. A.;
Croft, G.; O’Keefe, S. J.; Li, B.; Hacker, C.; de Laszlo, S.;
Smith, A.; Libby, B.; Liverton, N.; Hermes, J.; LoGrasso, P.
Biochemistry 1998, 37, 16573. (b) Lee, J. C.; Kassis, S.;
Kumar, S.; Badger, A.; Adams, J. L. Pharmacol. Ther. 1999,
82, 389.
7. (a) Mantlo, N. B.; Hwang, C. K.; Spohr, U. D. WO9932448;
Chem. Abstr. 1999, 131, 58754. (b) Adams, J. L.; Boehm, J. C.;
Hall, R. WO0025791; Chem. Abstr. 2000, 132, 334471. (c)
Claremon, D. A.; Ponticello, G. S. WO0031065; Chem. Abstr.
2000, 133, 4673. (d) Adams, J. L.; Boehm, J. C. WO0040243;
Chem. Abstr. 2000, 133, 89539.
8. Tisler, M.; Stanovnik, B. In Comprehensive Heterocyclic
Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon:
Oxford, 1984; Vol. 3, p 45.
9. All final products gave satisfactory 1H NMR, MS, and
In addition to the kinase selectivity experiments, 24e
was assessed in two cell-based assays ofTNF- a release.
A substantial decrease in activity (human monocyte17
IC50 292 nM, human whole blood1 IC50 1200 nM) ver-
sus the value for p38 MAPK inhibition (IC50 2.6 nM)
was observed which suggests this pyridazine derivative
was not effectively penetrating cells.
In summary, although 24e showed favorable in vitro
potency and selectivity versus p38 MAPK, additional
SAR studies directed towards increasing activity in the
cell-based assays would be required before a trisubstituted
pyridazine could advance as a small molecule drug can-
didate for intervention in TNF-a mediated disorders.
CHN analysis. Representative data follows for 9 and 24e. For
1
.
.
9 2HCl 0.95H2O: H NMR (300 MHz, CD3OD) d 7.86 (d, br,
1H), 7.86–7.70 (m, 3H), 7.64–7.52 (m, 3H), 7.36–7.22 (m, 5H),
4.80 (s, br, 1H), 3.66–3.56 (m, 2H), 3.48–3.38 (m, 1H), 3.32–
3.18 (m, 2H), 2.38–2.25 (m, 4H), 1.46 (d, br, 3H); MS m/z
+
.
505.25 (MH ). Anal. calcd for C28H27F3N6 2HCl 0.95H2O:
.
C, 56.56; H, 5.24; N, 14.13. Found: C, 56.61; H, 5.27; N,
1
.
.
14.07. For 24e HCl 1.55H2O: H NMR (500 MHz, CD3OD) d
8.40 (s, br, 1H), 8.06 (s, br, 1H), 7.80 (d, J=7 Hz, 1H), 7.76 (s,
1H), 7.64–7.57 (m, 2H), 7.30–7.24 (m, 2H), 7.23–7.16 (m, 3H),
6.95 (s, br, 1H), 4.50 (s, br, 1H), 3.90 (m, 4H), 3.83 (m, 4H),
1.35 (s, br, 3H); MS m/z 507.27 (MH+). Anal. calcd for
Acknowledgements
The authors wish to thank Dr. John A. McCauley
(Merck Research Laboratories) for helpful editorial
review ofthis manuscript.
.
.
C27H25F3N6O HCl 1.55H2O: C, 56.80; H, 5.14; N, 14.72.
Found: C, 56.82; H, 4.76; N, 14.54.
10. Buckle, D. R. In Encyclopedia of Reagents for Organic
Synthesis; Paquette, L. A., Ed.; John Wiley and Sons: Chi-
chester, 1995; Vol. 3, p 1699.
References and Notes
11. Blacklock, T. J.; Sohar, P.; Butcher, J. W.; Lamanec, T.;
Grabowski, E. J. J. J. Org. Chem. 1993, 58, 1672.
12. Schon, U.; Kehrbach, W.; Hachmeister, B.; Buschmann,
G.; Kuhl, U. G. U.S. 4,755,520; Chem. Abstr. 1987, 106,
156761.
13. Aldous, D. L.; Castle, R. N. In Pyridazines; Castle, R. N.,
Ed.; John Wiley and Sons: New York, 1973; p 221.
14. Nagagome, T. In Pyridazines; Castle, R. N., Ed.; John
Wiley and Sons: New York, 1973; p 468.
15. The inhibition ofp38 kinase was determined according to
a published method18 using an enzyme concentration of0.5 nM.
16. All enzyme inhibition assays were carried out using meth-
ods described in ref1 and the references cited therein.
17. Chin, J.; Kostura, M. J. J. Immunol. 1993, 151, 5574.
18. LoGrasso, P. V.; Frantz, B.; Rolando, A. M.; O’Keefe,
S. J.; Hermes, J. D.; O’Neill, E. A. Biochemistry 1997, 36,
10422.
1. Liverton, N. J.; Butcher, J. W.; Claiborne, C. F.; Claremon,
D. A.; Libby, B. E.; Nguyen, K. T.; Pitzenberger, S. M.; Sel-
nick, H. G.; Smith, G. R.; Tebben, A.; Vacca, J. P.; Varga,
S. L.; Agarwal, L.; Dancheck, K.; Forsyth, A. J.; Fletcher,
D. S.; Frantz, B.; Hanlon, W. A.; Harper, C. F.; Hofsess, S. J.;
Kostura, M.; Lin, J.; Luell, S.; O’Neill, E. A.; Orevillo, C. J.;
Pang, M.; Parsons, J.; Rolando, A.; Sahly, Y.; Visco, D. M.;
O’Keefe, S. J. J. Med. Chem. 1999, 42, 2180.
2. (a) Lee, J. C.; Laydon, J. T.; Mcdonnell, P. C.; Gallagher,
T. F.; Kimar, S.; Green, D.; McNulty, D.; Blumenthal, M. J.;
Heys, J. R.; Landvatter, S. W.; Strickler, J. E.; McLaughlin,
M. M.; Siemens, I. R.; Fisher, S. M.; Livi, G. P.; White, J. R.;
Adams, J. L.; Young, P. R. Nature 1994, 372, 739. (b) Lee, J.
C.; Young, P. R. J. Leuk. Bio. 1996, 59, 152. (c) Wang, H.;
Tracey, K. J. In Inflammation: Basic Principles and Clinical
Correlates, 3rd ed.; Gallin, J. I., Snyderman, R., Eds.; Lippin-
cott, Williams & Wilkins: Philadelphia, 1999; p 471.