dimethoxypropoane (DMP) afforded S-(1), [R]20 -17.0 (c
D
1.4, CHCl3) [lit.5i [R]20 -17.1 (c 1.2, CHCl3)]. Similar
Scheme 1a
D
treatment of 10 with DMP resulted in (R)-1, [R]20 +17.2
D
(c 1.2, CHCl3). The kinetic resolution of the N-Cbz protected
7 proved more difficult and required termination at 40%
conversion to obtain 11, or at 60% conversion to obtain 9
with high enantioenrichment. Compound 11 displayed [R]20
D
-32.3 (c 1.0, CHCl3) [lit.12g [R]25 -32.1 (c 3.1, CHCl3)].
D
Treatment of 9 with KCN resulted in the epimer of 11 with
[R]20D +31.2 (c 1.0, CHCl3). The analogous (S)-2 and (R)-2
were obtained by similar treatment with DMP.
With the key building blocks 1 and 2 in hand, we
embarked on the investigation of conditions for hydrobora-
tion of 1 and coupling with p-bromoanisole (Table 1) en
Table 1. Hydroboration Using 9-BBN and Suzuki
Cross-Coupling Studies of Compound 1 with 1213
hydroboration
conditions
yield of
entry
Pd cat. coupling conditions 12a (%)
a (a) CCl3CN, KH, 90-93%; (b) PdCl2(CH3CN)2, THF, 85%;
(c) i. 6 N HCl; ii. Boc2O (6), Cbz2O (7), 55%-65% (two steps); (d)
PS-30 lipase, isopropenyl acetate, 38-46% (94%-99% ee); (e)
KCN, 93% MeOH; (f) DMP, acetone, BF3‚Et2O, quantitative.
1
2
3
4
5
6
7
8
9
THF, rt
THF, rt
THF, 67 °C
THF, rt
THF, 67 °C
toluene, 80 °C
toluene, 67 °C
toluene, 80 °C
toluene, 80 °C
toluene, 80 °C
a
a
a
a
b
b
b
b
b
b
Cs2CO3, rt
39
25
29
66
72
94
78
80
75
56
K2CO3, DMF, rt
K3PO4, DMF, rt
3.2 N NaOH, 55 °C
3.2 N NaOH, 80 °C
3.2 N NaOH, 99 °C
CsF, 88 °C
3 N NaOH, 80 °C
K3PO4, DMF, 100 °C
K2CO3, DMF, 100°C
of the somewhat volatile 5 proceeded best under acidic
conditions. Subsequent protection of the resultant amine salt
with either Boc2O or Cbz2O10 under biphasic conditions
afforded compounds 611 or 7, respectively.12 Kinetic resolu-
tions of these compounds were achieved with Pseudomonas
cepecia (Amano PS-30) lipase in CH2Cl2/isopropenyl acetate.
For the N-Boc protected 6, the kinetic resolution was stopped
10
a 5 mol % of PdCl2(dppf)2. b 3 mol % of Pd(PPh3)4.
at 50% completion to afford 10 in 46% chemical yield with
route to 4-methoxyhomophenylalanine (40). Hydroboration
of 1 in THF at rt proved to be exceedingly slow, and
considerable starting material was present even after 24 h.
However, when the reaction was run in toluene at 80 °C,
the starting material disappeared completely within 15-30
min (entry 6).
With this satisfactory result, a wide variety of cross-
coupling conditions were explored (Table 1). Our experi-
ments indicate that a biphasic toluene/3.2 N NaOH system
25
[R]20 -28.5 (c 1.0, CHCl3) [lit.5i [R]
-30.5 (c 1.2,
D
D
CHCl3)]. Treatment of 8 with KCN followed by 2,2-
(5) (a) Beaulieu, P. L.; Duceppe, J.; Johnson, C. J. Org. Chem. 1991,
56, 4196. (b) Shimamoto, K.; Ishida, M.; Shinozaki, H.; Ohfune, Y. J. Org.
Chem. 1991, 56, 4167. (c) Boyd, E. C.; Paton, R. M. Tetrahedron Lett.
1993, 34, 3169. (d) McKillop, A.; Taylor, R. J. K.; Watson, R. J.; Lewis,
N. Synthesis 1994, 31. (e) Wei, Z.; Knaus, E. E. Synthesis 1994, 1463. (f)
Kawate, T.; Fukuta, N.; Nishida, A.; Nakagawa, M. Chem. Pharm. Bull.
1997, 45, 2116. (g) Moriwake, T.; Hamano, S.; Saito, S.; Torii, S. Chem.
Lett. 1987, 2085. (h) Kumar, J. S. R.; Datta, A. Tetrahedron Lett. 1997,
38, 6779. (i) Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. Synthesis
1998, 1707.
(11) (a) Horikawa, M.; Hashimoto, K.; Shirahama, H. Tetrahedron Lett.
1993, 34, 331. (b) Kurokawa, N.; Ohfune, Y. Tetrahedron 1993, 49, 6195.
(c) Ohfune, Y.; Kurokawa, N. Tetrahedron Lett. 1984, 25, 1071. (d) Crisp,
G. T.; Gebauer, M. G. Tetrahedron 1996, 52, 12465. (e) Naito, T.; Ikai,
M.; Shirakawa, M.; Fujimoto, K.; Ninomiya, I.; Kiguchi, T. J. Chem. Soc.,
Perkin Trans. 1 1994, 7, 773. (f) Ohfune, Y.; Kurokawa, N. Tetrahedron
Lett. 1984, 25, 1587. (g) Matsunaga, H.; Ishizuka, T.; Kunieda, T.
Tetrahedron 1997, 53, 1275. (h) Kiguchi, T.; Ikai, M.; Shirakawa, M.;
Fujimoto, K.; Ninomiya, I.; Naito, T. J. Chem. Soc., Perkin Trans. 1 1998,
5, 893. (i) Naito, T.; Shirakawa, M.; Ikai, M.; Ninomiya, I.; Kiguchi, T.
Recl. TraV. Chim. Pays-Bas 1996, 115, 13. (j) See also refs 5a, 5b, 5c, 5d,
5g, and 5i.
(6) Reginato, G.; Mordini, A.; Capperucci, A.; Degl’Innocenti, A.;
Manganiello, S. Tetrahedron 1998, 54, 10217.
(7) (a) Vyas, D. M.; Chiang, Y.; Doyle, T. W. J. Org. Chem. 1984, 49,
2037. (b) Cardillo, G.; Orena, M.; Sandri, S. J. Org. Chem. 1986, 51, 713.
(8) In our hands Overman rearrangement of the bisimidate 4 under
reported conditions7a resulted in incomplete conversion of starting material.
Under more forceful thermal rearrangement conditions, significant losses
were incurred due to charring and the formation of 5‚HCl
(12) (a) Hayashi, T.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1988, 29,
99. (b) Huwe, C. M.; Blechert, S. Tetrahedron Lett. 1995, 36, 1621. (c)
Yoo, S.; Lee, S.; Jeong, N.; Cho, I. Tetrahedron Lett. 1993, 34, 3435. (d)
Yoo, S.; Lee, S. J. Org. Chem. 1994, 59, 6968. (e) Wade, P. A.; Singh, S.
M.; Pillay, M. K. Tetrahedron 1984, 40, 601. (f) Crisp, G. T.; Glink, P. T.
Tetrahedron 1992, 48, 3541. (g) Trost, B. M.; Bunt, R. C. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 99. (h) See also ref 11d. (i) Huwe, C. M.; Blechert,
S. Tetrahedron Lett. 1994, 35, 9533; 9537. (j) Huwe, C. M.; Velder, J.;
Blechert, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 2376. (k) Huwe, C.
M.; Blechert, S. Synthesis 1997, 61. (l) See also refs 11c and 11f.
which sublimed at 180 °C. The structure of this material was verified by
treatment of 5 with a dry ether solution of HCl which yielded a crystalline
product with identical spectroscopic properties. Overman rearrangement
(heating, K2CO3 to neutralize acidic species)9 likewise resulted in only partial
conversion of starting material 4.
(9) Nishikawa, T.; Asai, M.; Ohyabu, N.; Isobe, M. J. Org. Chem. 1998,
63, 188.
(10) Sennyey, G.; Barcelo, G.; Senet, J. Tetrahedron Lett. 1986, 27, 5375.
1090
Org. Lett., Vol. 2, No. 8, 2000