Versatile Catalysts for Suzuki Cross-Coupling
J. Am. Chem. Soc., Vol. 122, No. 17, 2000 4021
Table 1. Suzuki Cross-Couplings of Activated Aryl Chlorides at
Room Temperature
activated substrates (i.e., heteroaryl chlorides and aryl chlorides
that bear an electron-withdrawing group), which generally only
proceeded at high temperature (75-130 °C).10,11 Since 1998,
several research groups have described electron-rich ligands for
palladium that overcome this limitation, specifically, aryldialkyl-
phosphines (Buchwald;12 Bei and Guram13), P(t-Bu)3 (Fu6,14),
and N-heterocyclic carbenes (Nolan;15 Herrmann16).17,18 With
respect to Suzuki couplings of aryl chlorides that proceed at
room temperature, the only successful catalyst systems reported
to date are those of Buchwald (very general) and of Kocovsky
(one example).18
In our initial communication, we reported a general method
for the Suzuki cross-coupling of aryl chlorides and arylboronic
acids in the presence of a Pd2(dba)3/P(t-Bu)3 catalyst system,
with Cs2CO3 as the base (80-90 °C in dioxane; eq 1);6,19 toward
the end of that study, we discovered that CsF is also a highly
effective base.20,21 We have since investigated the replacement
of CsF by less expensive KF,12b,c and we have found that Suzuki
reactions are even more rapid in the presence of KF. The
P(t-Bu)3:Pd is an important parameter: whereas use of a 1:1
ratio furnishes a very active catalyst, use of a 2:1 ratio leads to
a Isolated yield, average of two runs. b 1.5% Pd2(dba)3 and 3%
P(t-Bu)3 were used.
(10) (a) Gronowitz, S.; Ho¨rnfeldt, A.-B.; Kristjansson, V.; Musil, T.
Chem. Scr. 1986, 26, 305-309. (b) Thompson, W. J.; Jones, J. H.; Lyle, P.
A.; Thies, J. E. J. Org. Chem. 1988, 53, 2052-2055. (c) Mitchell, M. B.;
Wallbank, P. J. Tetrahedron Lett. 1991, 32, 2273-2276. (d) Alcock, N.
W.; Brown, J. M.; Hulmes, D. I. Tetrahedron: Asymmetry 1993, 4, 743-
746. (e) Janietz, D.; Bauer, M. Synthesis 1993, 33-34. (f) Uemura, M.;
Nishimura, H.; Kamikawa, K.; Nakayama, K.; Hayashi, Y. Tetrahedron
Lett. 1994, 35, 1909-1912. (g) Beller, M.; Fischer, H.; Herrmann, W. A.;
Ofele, K.; Brossmer, C. Angew. Chem., Int. Ed. Engl. 1995, 34, 1848-
1849. (h) Zhang, H.; Chan, K. S. Tetrahedron Lett. 1996, 37, 1043-1044.
(i) Saito, S.; Sakai, M.; Miyaura, N. Tetrahedron Lett. 1996, 37, 2993-
2996. (j) Shen, W. Tetrahedron Lett. 1997, 38, 5575-5578.
(11) For pioneering work on nickel-catalyzed cross-couplings of aryl
chlorides and arylboronic acids, see: (a) Saito, S.; Oh-tani, S.; Miyaura,
N. J. Org. Chem. 1997, 62, 8024-8030. (b) Indolese, A. F. Tetrahedron
Lett. 1997, 38, 3513-3516.
(12) (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc.
1998, 120, 9722-9723. (b) Wolfe, J. P.; Buchwald, S. L. Angew. Chem.,
Int. Ed. 1999, 38, 2413-2416. (c) Wolfe, J. P.; Singer, R. A.; Yang, B. H.;
Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550-9561.
(13) (a) Bei, X.; Crevier, T.; Guram, A. S.; Jandeleit, B.; Powers, T. S.;
Turner, H. W.; Uno, T.; Weinberg, W. H. Tetrahedron Lett. 1999, 40, 3855-
3858. (b) Bei, X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S.; Petersen,
J. L. J. Org. Chem. 1999, 64, 6797-6803.
an extremely slow reaction.22 Among palladium sources,
Pd2(dba)3 is superior to Pd(OAc)2.23
With this improved method, we can cleanly effect Suzuki
cross-couplings of activated aryl chlorides under significantly
milder conditions (room temperature) and with lower catalyst
loadings (0.5% Pd2(dba)3 and 1% P(t-Bu)3) than we had
previously reported (Table 1; cf. eq 1).24-26 Thus, 4′-chloro-
acetophenone cross-couples efficiently with sterically hindered,
with electron-rich, and with electron-poor arylboronic acids
(entries 1-3, Table 1).27 Chloro-substituted pyridines and
thiophenes, which have the potential to bind to palladium
through nitrogen or sulfur, are also suitable substrates for room-
temperature Suzuki reactions (entries 4-6, Table 1).
More vigorous conditions are typically required to effect
Suzuki cross-couplings of electron-rich aryl chlorides (70-100
°C; Table 2). The use of a slightly higher P(t-Bu)3:Pd ratio
(1.5:1) at higher reaction temperatures appears to stabilize the
catalyst and to decrease the precipitation of palladium metal.28
Under these conditions, electron-rich aryl chlorides, including
4-chloroaniline, couple efficiently with both aryl- and alkyl-
boronic acids (entries 1-3, Table 2).29
(14) For other applications of P(t-Bu)3 in palladium-catalyzed couplings
of aryl chlorides, see: (a) Amination: Nishiyama, M.; Yamamoto, T.; Koie,
Y.; Tetrahedron Lett. 1998, 39, 617-620. Hartwig, J. F.; Kawatsura, M.;
Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. J. Org. Chem.
1999, 64, 5575-5580. (b) Heck reaction: Littke, A. F.; Fu, G. C. J. Org.
Chem. 1999, 64, 10-11. Shaughnessy, K. H.; Kim, P.; Hartwig, J. F. J.
Am. Chem. Soc. 1999, 121, 2123-2132. (c) Reaction of ketone enolates:
Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 1473-1478.
(d) Reaction of alkoxides: Mann, G.; Incarvito, C.; Rheingold, A. L.;
Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224-3225. Watanabe, M.;
Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1999, 40, 8837-8840. (e)
Amidocarbonylation: Kim, J. S.; Sen, A. J. Mol. Catal. A 1999, 143, 197-
201. (f) Stille reaction: Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed.
1999, 38, 2411-2413.
Room-Temperature Suzuki Cross-Coupling of Aryl Bro-
mides. There are relatively few examples of Suzuki cross-
couplings of aryl bromides that proceed at room temperature.30
(22) For an explanation of this observation, see the section that describes
mechanistic work on Suzuki cross-couplings of aryl chlorides and aryl
bromides (vide infra).
(15) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem.
1999, 64, 3804-3805.
(23) For our original optimization work, see ref 6.
(16) (a) Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet.
Chem. 1998, 557, 93-96. (b) Weskamp, T.; Bohm, V. P. W.; Herrmann,
W. A. J. Organomet. Chem. 1999, 585, 348-352.
(24) In the absence of P(t-Bu)3, no coupling between 4′-chloroacetophe-
none and o-tolylboronic acid is observed at room temperature (cf. Table 1,
entry 1).
(25) Under these nonaqueous conditions, hydrolytic cleavage of the B-C
bond is not a concern. For discussions of this issue, see ref 1.
(26) Dioxane is also a suitable solvent.
(17) See also: Firooznia, F.; Gude, C.; Chan, K.; Satoh, Y. Tetrahedron
Lett. 1998, 39, 3985-3988.
(18) See also: Kocovsky, P.; Vyskocil, S.; Cisarova, I.; Sejbal, J.;
Tislerova, I.; Smrcina, M.; Lloyd-Jones, G. C.; Stephen, S. C.; Butts, C.
P.; Murray, M.; Langer, V. J. Am. Chem. Soc. 1999, 121, 7714-7715.
(19) For an application of this method, see: Firooznia, F.; Gude, C.;
Chan, K.; Marcopulos, N.; Satoh, Y. Tetrahedron Lett. 1999, 40, 213-216.
(20) See footnote 9 of ref 6.
(27) Cross-coupling can also be effected at 0 °C, although the reaction
is slower.
(28) However, as we have observed for Suzuki cross-couplings of
electron-poor aryl chlorides, reactions of electron-rich aryl chlorides proceed
very slowly when a 2:1 ratio of P(t-Bu)3:Pd is employed.
(29) The need for a higher temperature for the reaction of cyclopentyl-
boronic acid may be due to the slower rate of transmetalation by alkylboron
compounds, relative to arylboron compounds. For example, see ref 21b.
(21) (a) Ichikawa, J.; Moriya, T.; Sonoda, T.; Kobayashi, H. Chem. Lett.
1991, 961-964. (b) Wright, S. W.; Hageman, D. L.; McClure, L. D. J.
Org. Chem. 1994, 59, 6095-6097.