Page 23 of 25
Journal of the American Chemical Society
Chem. Phys. 2015, 149, 216-223; (h) Kinoshita, S.; Watase, S.;
Polym. Sci. 2013, 129 (5), 2435–2442; (d) Ganicz T., Stańczyk W.
Side-chain liquid crystal polymers (SCLCP): Methods and
materials. An overview. Materials. 2009, 2 (1), 95-128; (e)
Kinoshita, S.; Watase, S.; Matsukawa, K.; Kaneko, Y. Selective
Synthesis of cis–trans–cis cyclic tetrasiloxanes and the formation
of their two-dimensional layered aggregates. J. Am. Chem. Soc.
2015, 137 (15), 5061−5065.
Matsukawa, K.; Kaneko, Y. Selective Synthesis of cis–trans–cis
Cyclic Tetrasiloxanes and the Formation of Their Two-
Dimensional Layered Aggregates. J. Am. Chem. Soc. 2015, 137 (15),
5061–5065; (i) Martínez-Rugerio, G.; Arbe, A.; Colmenero, J.;
Alegría, A. Supramolecular Self-Assembly of Monocarboxydecyl-
Terminated Dimethylsiloxane Oligomer. Macromolecules.
2017, 50 (21), 8688–8697; (j) Chen, Z.; Leatherman, M.D.;
Daugulis, O.; Brookhart, M. Nickel-Catalyzed Copolymerization
of Ethylene and Vinyltrialkoxysilanes: Catalytic Production of
Cross-Linkable Polyethylene and Elucidation of the Chain-
Growth Mechanism. J. Am. Chem. Soc. 2017, 139 (44), 16013–16022
1
2
3
4
5
6
7
8
9. (a) Abakumov, G.A.; Piskunov,A.V.; Cherkasov,V.K.;
Fedushkin, I.L.; Ananikov,V.P.; Eremin, D.B.; Gordeev, E.G.;
Beletskaya, I.P.; Averin,A.D.; Bochkarev, M.N.; Trifonov, A.A.;
Dzhemilev, U.M.; Dyakonov,V.A.; Egorov,M.P.; Vereshchagin,
A.N.; Syroeshkin, M.A.; Jouikov, V.V.; Muzafarov, A.M.;
Anisimov, A.A.; Arzumanyan, A.V.; Kononevich,Yu.N.;
Temnikov,M.N.; Synyashin,O.G.; Budnikova, Yu.H.; Burilov,
A.R.; Karasik, A.A.; Mironov, V.F.; Storozhenko, P.A.;
Shcherbakova, G.I.; Trofimov, B.A.; Amosova, S.V.; Gusarova,
N.K.; Potapov, V.A.; Shur, V.B.; Burlakov, V.V.; Bogdanov, V.S.;
Andreev, M.V. Organoelement chemistry: promising growth
areas and challenges. Russ. Chem. Rev. 2018, 87 (5), 393-507; (b)
Rösch, L.; John, P.; Reitmeier, R. Silicon Compounds, Organic,
Ullmann's Encyclopedia of Industrial Chemistry, John Wiley &
Sons, VCH: Weinheim, 2002.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
3. (a) Bao, Z.; Xie, D.; Chang, G.; Wu, H.; Li, L.; Zhou, W.; Wang,
H.; Zhang, Z.; Xing, H.; Yang, Q.; Zaworotko, M.J.; Ren, Q.; Chen,
B. Fine Tuning and Specific Binding Sites with a Porous
Hydrogen-Bonded Metal-Complex Framework for Gas Selective
Separations. J. Am. Chem. Soc. 2018, 140 (13), 4596–4603; (b) Li,
Y.; Handke, M.; Chen,Y-S.; Shtukenberg, A.G.; Hu, C.T.; Ward,
M.D. Guest Exchange through Facilitated Transport in
a
Seemingly Impenetrable Hydrogen-Bonded Framework J. Am.
Chem. Soc. 2018, 140 (40), pp 12915–12921
4. (a) Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M.
The chemistry and applications of metal-organic frameworks.
Science. 2013, 341, 1230444; (b) Li, B.; Wen, H-M.; Cui, Y.; Zhou,
W.; Qian, G.; Chen, B. Emerging multifunctional metal–organic
framework materials. Adv. Mater. 2016, 28 (40), 8819–8860; (c)
Roeser, J.; Prill, D.; Bojdys, M.J.; Fayon, P.; Trewin, A.; Fitch,
A.N.; Schmidt, M.N.; Thomas, A. Anionic silicate organic
frameworks constructed from hexacoordinate silicon centres.
Nat. Chem. 2017, 9 (10), 977–982; (d) Van Vleet, M.J.; Weng, T.;
Li, X.; Schmidt, J.R. Time-Resolved, and Mechanistic Studies of
Metal–Organic Framework Nucleation and Growth. Chem Rev.
2018, 118 (7), 3681-3721;
10. (a) Obligacion, J.V.; Chirik, P.J. Earth-abundant transition
metal catalysts for alkene hydrosilylation and hydroboration.
Nat. Rev. Chem. 2018, 2 (5), 15-34; (b) Corey, J.Y. Reactions of
hydrosilanes with transition metal complexes. Chem.
Rev., 2016, 116 (19), 11291–11435.
11. (a) Du, X.; Huang, Z. Advances in base-metal-catalyzed alkene
hydrosilylation. ACS Catal. 2017, 7 (2), 1227−1243; (b) Arkles, B.
Silane Coupling Agents: Connecting Across Buondaries. Gelest,
Morrsville: 2014; (c) Arkles, B. Reactive Silicones: Forging New
Polymer Links. Gelest, Morrsville: 2016.
12. (a) Liu, H.; Kondo, S.; Takeda, N.; Unno, M. Synthesis of
octacarboxy spherosilicate. J. Am. Chem. Soc. 2008, 130 (31),
10074–10075; (b) Ghatge, N. D.; Mohite, S.S. Disiloxane-
containing difunctional compounds: Synthesis and reactivity of
1, 3-bis-(p-isocyanatophenyl) disiloxanes. Polyhedron. 1987, 6 (3),
435-440; (c) Davies, R.P.; Less, R.J.; Lickiss, P.D.; Robertson K.;
White, A.J.P. Tetravalent Silicon Connectors Me n Si (p-
C6H4CO2H) 4− n (n= 0, 1, 2) for the Construction of Metal−
Organic Frameworks. J. Inorg. Chem. 2008, 47, 9958-9964. (d)
Martínez-Rugerio, G.; Arbe, A.; Colmenero, J.; Alegría, A.
Supramolecular Self-Assembly of Monocarboxydecyl-Terminated
Dimethylsiloxane Oligomer. Macromolecules. 2017, 50 (21),
8688–8697. (e) Kinoshita, S.; Watase, S.; Matsukawa, K.; Kaneko,
Y. Selective Synthesis of cis–trans–cis cyclic tetrasiloxanes and
the formation of their two-dimensional layered aggregates. J.
Am. Chem. Soc. 2015, 137 (15), 5061–5065.
5. Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J-P.; Boutevin,
B. Biobased amines: from synthesis to polymers; present and
future. Chem. Rev. 2016, 116 (22), 14181–14224.
6. Cheng, C.; Hartwig, J.F. Rhodium-catalyzed intermolecular C–
H silylation of arenes with high steric regiocontrol. Science. 2014,
343 (6173), 853 – 857; (b) Arzumanyan, A.V.; Terent’ev, A.O.;
Novikov, R.A.; Lakhtin, V.G.; Grigoriev, M.S.; Nikishin, G.I.
Reduction of Organosilicon Peroxides: Ring Contraction and
Cyclodimerization. Organometallics. 2016, 35 (11), 1667-1673; (c)
Parasram, M.; Gevorgyan, V. Silicon-Tethered Strategies for C–H
Functionalization Reactions. Acc. Chem. Res. 2017, 50, 2038–
2053.
7. (a) Nakao, Y.; Hiyama, T. Silicon-based cross-coupling
reaction: an environmentally benign version Chem. Soc. Rev.
2011, 40 (10), 4893–4901. (b) Denmark, S.E.; Ambrosi, A. Why
you really should consider using palladium-catalyzed cross-
coupling of silanols and silanolates Org. Process Res. Dev.
Iridium-catalysed arylation of C–H bonds enabled by oxidatively
induced reductive elimination. Nat. Chem. 2018, 10 (2), 218–224.
13. Delmas, L.C.; Horton, P.N.; White, A.J.P. Coles, S.J.; Lickiss,
P.D.; Davies, R.P. Siloxane-based linkers in the construction of
hydrogen bonded assemblies and porous 3D MOFs. Chem.
Commun. 2017, 53 (93), 12524-12527.
14. (a) Lewis, D.W.; Gainer, G.C. The Oxidation of Tetramethyl-1,
8. (a) Batra, A.; Cohen, C.; Kim, H.; Winey, K.I.; Ando, N.;
Gruner, S.M. Counterion effect on the rheology and morphology
of tailored poly(dimethylsiloxane) ionomers. Macromolecules.
2006, 39, 1630-1638; (b) Zhang, A.; Deng, W.; Lin, Y.; Ye, J.; Dong,
Y.; Lei, Y.; Chen, H. Novel supramolecular elastomer films based
on linear carboxyl-terminated polydimethylsiloxane oligomers:
preparation, characterization, biocompatibility, and application
in wound dressings. J. Biomater. Sci., Polym. Ed. 2014, 25 (13),
1346–1361; (c) Zhang, A.; Yang, L.; Lin, Y.; Yan, L.; Lu, H.; Wang,
L. Self-healing supramolecular elastomers based on the
3-bis-(p-tolyl)-disiloxane
to
1,
3-Bis-(p-carboxyphenyl)-
tetramethyldisiloxane. J. Am. Chem. Soc. 1952, 74 (11), 2931–2933;
(b) Speck, S.B. Silicon-containing condensation polymers. J. Org.
Chem. 1953, 18 (12), 1689–1700; (c) Ghatge, N.D.; Mohite, S.S.
Disiloxane-containing difunctional compounds: Synthesis and
reactivity
Polyhedron. 1987,
of
1,
3-bis-(p-isocyanatophenyl) disiloxanes.
6
MnCl2/tBuOOH oxidizing system for conversion of p-
tolyldisiloxanes to p-carboxyphenyldisiloxanes. J. Organomet.
Chem. 2018, 862, 28-30; (e) Arzumanyan, A.V.; Goncharova, I.K.;
Novikov, R.A.; Milenin, S.A.; Muzafarov, A.M. Copper-Catalyzed
multi-hydrogen
polydimethylsiloxanes: Synthesis and characterization. J. Appl.
bonding
of
low-molecular
ACS Paragon Plus Environment