1224
F. Berthiol et al. / Tetrahedron Letters 44 (2003) 1221–1225
major isomer obtained is the 1-arylcyclooct-1-ene
(Table 2, entries 15–31).
dium Intermediates. Pergamon: Oxford, 1991; Vol. 4; (c)
de Meijere, A.; Meyer, F. Angew. Chem., Int. Ed. Engl.
1994, 33, 2379; (d) Malleron, J.-L.; Fiaud, J.-C.; Legros,
J.-Y. Handbook of Palladium-Catalysed Organic Reac-
tions; Academic Press: London, 1997; (e) Reetz, M. T.
Transition Metal Catalysed Reactions; Davies, S. G.;
Murahashi, S.-I., Eds.; Blackwell Science: Oxford, 1999;
(f) Beletskaya, I.; Cheprakov, A. Chem. Rev. 2000, 100,
3009; (g) Withcombe, N.; Hii (Mimi), K. K.; Gibson, S.
Tetrahedron 2001, 57, 7449; (h) Littke, A.; Fu, G.
Angew. Chem., Int. Ed. 2002, 41, 4176.
We have investigated the vinylation of several aryl
bromides with cyclooctene and in all cases the 1-aryl-
cyclooct-1-ene was obtained in 85–90% selectivity.
Heteroaromatic substrates such as 2-iodothiophene, 3-
bromopyridine or 3-bromoquinoline in the presence of
cyclooctene also led to 1-arylcyclooct-1-enes selectively
(Table 2, entries 27–31).
Next, we performed some reactions with cyclohexene
and cycloheptene. With these substrates the selective
formation of the 4-arylcycloalk-1-ene was observed
(Table 2, entries 4–14). A minor influence of the sub-
stituents on the aryl halide was observed. Finally, a
few reactions have been performed with cyclododecene
but in all cases the formation of mixtures of 4–7
isomers were obtained (Table 2, entries 32–35). The
behaviour of all these cycloalkenes seems to come
mainly from the conformation of the Pd-substrate
intermediates rather than from the thermodynamic sta-
bility of the products.
2. For examples of Heck reaction using aryl halides and
linear alkenes, see: (a) Larock, R.; Leung, W.-Y.; Stolz-
Dunn, S. Tetrahedron Lett. 1989, 30, 6629; (b) Mabic,
S.; Lepoittevin, J.-P. Tetrahedron Lett. 1995, 36, 1705;
(c) Bra¨se, S.; Ru¨mper, J.; Voigt, K.; Albecq, S.; Thurau,
G.; Villard, R.; Waegell, B.; de Meijere, A. Eur. J. Org.
Chem. 1998, 671; (d) Littke, A.; Fu, G. J. Am. Chem.
Soc. 2001, 123, 6989.
3. For examples of Heck reaction using aryl halides and
cyclic alkenes, see: (a) Larock, R.; Baker, B. Tetrahedron
Lett. 1988, 29, 905; (b) Larock, R.; Gong, W.; Baker, B.
Tetrahedron Lett. 1989, 30, 2603; (c) Larock, R.; Gong,
W. J. Org. Chem. 1989, 54, 2047; (d) Hillers, S.; Sartori,
S.; Reiser, O. J. Am. Chem. Soc. 1996, 118, 2087; (e)
Gron, L.; Tinsley, A. Tetrahedron Lett. 1999, 40, 227; (f)
Hartung, C.; Ko¨hler, K.; Beller, M. Org. Lett. 1999, 1,
709; (g) Djakovitch, L.; Koehler, K. J. Am. Chem. Soc.
2001, 123, 5990; (h) Buechner, I.; Metz, P. Tetrahedron
Lett. 2001, 42, 5381.
In summary, in the presence of the Tedicyp/palladium
complex, the Heck vinylation of several aryl halides
with linear and cyclic alkenes can be performed with
as little as 0.01% catalyst. With linear alkenes, mix-
tures of isomers are obtained. The selectivity of the
addition depends on the aryl halide and on the alkene.
In all cases, the major isomer is the 1-arylalkene. The
selectivity of the reaction with cyclic alkenes is even
more sensitive to the substrates. High selectivities in
favour of the 1-arylcyclooct-1-enes can be obtained
from the reaction of several aryl halides with
cyclooctene. Good selectivities in favour of 4-arylcy-
cloalk-1-enes are obtained with cyclohexene or cyclo-
heptene. These results represent economically
attractive and environmentally friendly procedures.
Moreover, due to the high price of palladium, the
practical advantage of such low catalyst loading reac-
tions can become increasingly important for industrial
processes.
4. For recent examples of Heck reactions catalysed by pal-
ladacycles, see: (a) Herrmann, W. A.; Brossmer, C.;
8
Ofele, K.; Reisinger, C.; Riermeier, T.; Beller, M.;
Fisher, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 1844;
(b) Herrmann, W. A.; Brossmer, C.; Reisinger, C.; Rier-
8
meier, T.; Ofele, K.; Beller, M. Chem. Eur. J. 1997, 3,
1357; (c) Ohff, M.; Ohff, A.; Boom, M.; Milstein, D. J.
Am. Chem. Soc. 1997, 119, 11687; (d) Albisson, D.; Bed-
ford, R.; Scully, P. N. Tetrahedron Lett. 1998, 39, 9793;
(e) Ohff, M.; Ohff, A.; Milstein, D. Chem. Commun.
1999, 357; (f) Miyazaki, F.; Yamaguchi, K.; Shibasaki,
M. Tetrahedron Lett. 1999, 40, 7379; (g) Bergbreiter, D.;
Osburn, P.; Liu, Y.-S. J. Am. Chem. Soc. 1999, 121,
9531; (h) Gai, X.; Grigg, R.; Ramzan, I.; Sridharan, V.;
Collard, S.; Muir, J. Chem. Commun. 2000, 2053; (i)
Gibson, S.; Foster, D.; Eastham, D.; Tooze, R.; Cole-
Hamilton, D. Chem. Commun. 2001, 779; (j) Iyer, S.;
Jayanthi, A. Tetrahedron Lett. 2001, 42, 7877.
Acknowledgements
We thank the CNRS and the ‘Conseil Ge´ne´ral des
Bouches-du-Rhoˆne, Fr.’ for providing financial
support.
5. For
a
review on the synthesis of polypodal
diphenylphosphine ligands, see: Laurenti, D.; Santelli,
M. Org. Prep. Proc. Int. 1999, 31, 245–294.
6. Laurenti, D.; Feuerstein, M.; Pe`pe, G.; Doucet, H.; San-
telli, M. J. Org. Chem. 2001, 66, 1633.
7. Feuerstein, M.; Laurenti, D.; Bougeant, C.; Doucet, H.;
Santelli, M. Chem. Commun. 2001, 325.
References
8. (a) Feuerstein, M.; Doucet, H.; Santelli, M. J. Org.
Chem. 2001, 66, 5923; (b) Feuerstein, M.; Doucet, H.;
Santelli, M. Synlett 2001, 1980; (c) Feuerstein, M.;
Doucet, H.; Santelli, M. Tetrahedron Lett. 2002, 43,
2191; (d) Berthiol, F.; Feuerstein, M.; Doucet, H.; San-
telli, M. Tetrahedron Lett. 2002, 43, 2191.
1. For reviews on the palladium-catalysed Heck reaction,
see: (a) Heck, R. F. Palladium Reagents in Organic Syn-
theses, Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W.,
Eds.; Academic Press: London, 1985, p. 2.; (b) Heck, R.
F. In Comprehensive Organic Synthesis, Trost, B. M.;
Fleming, I., Eds. Vinyl Substitution with Organopalla-