Scheme 1a
Figure 1.
a (a) TiCl4, iPr2NEt, 0 to 23 °C, 1 h then BnO(CH2)2CHO, -78
°C, 20 min (98%); (b) LAH, THF, 0 °C, 1 h (92%); (c) PhLi, THF,
-78 °C, 30 min, TsCl, -20 °C, 30 min, then LAH, 0 °C, 20 min
(96%); (d) TIPSOTf, 2,6-lutidine (99%); (e) K2CO3, BBr3, CH2Cl2,
0 °C, (83%); (f) PCC, MS 4 Å, 23 °C, 10 min (98%); (g) NaH,
triethylphosphonoacetate, THF, 0 °C, 30 min (92%); (h) aq LiOH,
EtOH (1:1), 23 °C, 2 h (94%); (i) 5, DCC, DMAP, 23 °C, 12 h
(79%); (j) TBAF, THF, 23 °C (99%).
octadienoic acid 4, D-tyrosine ester 5, and protected â-amino
acid derivative 6. The fragments were planned to be
connected by Yamaguchi esterfication and cycloamidation
reactions. Introduction of the sensitive epoxide functionality
was planned at the final stage of the synthesis. The key
elements of our synthesis involved an ester-derived titanium-
enolate-mediated syn-aldol reaction to set the stereocenters
at C(5) and C(6) of fragment 410a,b Thus, acylation of trans-
4-phenyl-3-butenoic acid and (+)-(1R,2S)-1-(N-tosylamino)-
2-indanol with DCC and DMAP afforded the ester 7 in 98%
yield.10c As shown in Scheme 1, exposure of 7 to TiCl4 and
N,N-diisopropylethylamine in CH2Cl2 at 23 °C generated the
corresponding titanium enolate. Subsequent reaction of the
enolate with (benzyloxy)propionaldehyde at -78 °C fur-
nished the aldol adduct 8 as a single diastereomer in 98%
yield after silica gel chromatography. Reduction of 8 by
lithium aluminum hydride in THF at 0 °C for 1 h afforded
the diol in 92% yield. The primary hydroxyl group of the
resulting diol was selectively converted to the corresponding
methyl group in an one-pot, two-step sequence. Thus,
treatment of the diol with phenyllithium and p-toluenesulfo-
nyl chloride at -78 °C to -20 °C followed by reduction of
the resulting tosylate with lithium aluminum hydride pro-
vided the alcohol 9 in 96% yield.
Protection of the secondary alcohol using triisopropylsilyl
triflate and 2,6-lutidine in CH2Cl2 gave 10 in 99% yield.11
Selective removal of the benzyl protecting group was
effectively achieved by treatment of 10 with boron tribromide
in CH2Cl2 in the presence of potassium carbonate to provide
the corresponding alcohol in 83% yield.12 Initial attempts
with other conditions such as TMSCl/nBu4N+I-, FeCl3, or
Na/NH3 were unsuccessful.13 Oxidation of the resulting
alcohol with PCC in CH2Cl2 followed by Horner-Emmons
olefination of the aldehyde with sodium hydride and triethyl
phosphonoacetate provided the R,â-unsaturated ester 11 in
92% yield. Ester hydrolysis with aqueous lithium hydroxide
in a mixture (1:1) of EtOH and H2O gave the octadienoic
acid fragment 4 in 94% yield. Coupling of this acid with
(8) (a) Norman, B. H.; Hemscheidt, T.; Schultz, R. M.; Andis, S. L. J.
Org. Chem. 1998, 63, 5288. (b) Gardinier, K. M.; Leahy, J. W. J. Org.
Chem. 1997, 62, 7098. (c) Salamonczyk, G. M.; Han, K.; Guo, Z.-W.; Sih,
C. J. J. Org. Chem. 1996, 61, 6893. (d) Rej, R.; Nguyen, D.; Go, B.; Fortin,
S.; Lavalle´e, J.-F. J. Org. Chem. 1996, 61, 6289. (e) Barrow, R. A.;
Hemscheidt, T.; Liang, J.; Paik, S.; Moore, R. E.; Tius, M. A. J. Am. Chem.
Soc. 1995, 117, 2479. (f) Dhokte, U. P.; Khau, V. V.; Hutchison, D. R.;
Martinelli, M. J. Tetrahedron Lett. 1998, 39, 8771. (g) White, J. D.; Hong,
J.; Robarge, L. A. J. Org. Chem. 1999, 64, 6206. (h) Kobayashi, M.; Wang,
W.; Ohyabu, N.; Kurosu, M.; Kitagawa, I. Chem. Pharm. Bull. 1995, 43,
1598. (i) Kobayashi, M.; Wang, W.; Ohyabu, N.; Kurosu, M.; Kitagawa, I.
Chem. Pharm. Bull. 1994, 42, 2394.
(9) (a) Liang, L.; Hoard, D. W.; Khau, V. V.; Martinelli, M. J.; Moher,
E. D.; Moore, R. E.; Tius, M. A. J. Org. Chem. 1999, 64, 1459. (b)
Furuyama, M.; Shimizu, I. Tetrahedron: Asymmetry 1998, 9, 1351. (c)
Ali, S. M.; Georg, G. I. Tetrahedron Lett. 1997, 38, 1703.
(10) (a) Ghosh, A. K.; Fidanze, S.; Senanayake, C. H. Synthesis 1998,
937. (b) Ghosh, A. K.; Fidanze, S.; Onishi, M.; Hussain, K. A. Tetrahedron
Lett. 1997, 38, 7171. (c) Ghosh, A. K.; Onishi, M. J. Am. Chem. Soc. 1996,
118, 2527.
(11) Ru¨cker C. Chem. ReV. 1995, 95, 1009 and references cited therein.
(12) Treatment of 10 with boron tribromide in CH2Cl2 afforded the
corresponding alcohol in only 32% yield. The major side product was the
desilylation product.
(13) (a) Vedejs, E.; Buchanan, R. A.; Watanabe, Y. J. Am. Chem. Soc.
1989, 111, 8430. (b) Oikawa, Y.; Tanaka, T.; Yonemitsu, O. Tetrahedron
Lett. 1986, 27, 3647. (c) Park, M. H.; Takeda, R.; Nakanishi, K. Tetrahedron
Lett. 1987, 28, 3823.
1574
Org. Lett., Vol. 2, No. 11, 2000