JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
15 H. Tang, M. Radosz, Y. Shen, AIChE J. 2009, 55, 737–746.
distribution. All of these evidences confirmed the features of
the controlled/living polymerization under high pressure
when using DMA/BPO as the initiator and X1 as the
xanthate.
16 D. Greszta, D. Mardare, K. Matyjaszewski, Macromolecules
1994, 27, 638–644.
17 M. C. Iovu, K. Matyjaszewski, Macromolecules 2003, 36,
9346–9354.
18 Z. G. Xue, R. Poli, J. Polym. Sci., Part A: Polym. Chem.
2013, 51, 3494–3504.
CONCLUSIONS
19 K. Koumura, K. Satoh, M. Kamigaito, Y. Okamoto, Macro-
molecules 2006, 39, 4054–4061.
In summary, high pressure can enhance the polymerization
rate significantly (15.2 times) in comparison with that under
atmospheric pressure. It is more important that PVAc with
high molecular weight up to 123,000 g/mol and narrow
molecular weight distribution (Mw/Mn 5 1.28) can be easily
obtained via RAFT polymerization under high pressure
(5 kbar).
20 Y. Kwak, A. Goto, T. Fukuda, Y. Kobayashi, S. Yamago, Mac-
romolecules 2006, 39, 4671–4679.
21 S. Yamago, B. Ray, K. Iida, J. Yoshida, T. Tada, K.
Yoshizawa, Y. Kwak, A. Goto, T. Fukuda, J. Am. Chem. Soc.
2004, 126, 13908–13909.
22 B. B. Wayland, G. Poszmik, S. L. Mukerjee, M. Fryd, J. Am.
Chem. Soc. 1994, 116, 7943–7944.
23 A. Debuigne, Angew. Chem. Int. Ed. 2005, 117, 1125–1128.
24 C. S. Hsu, T. Y. Yang, C. H. Peng, Polym. Chem. 2014, 5,
3867–3875.
ACKNOWLEDGMENTS
The financial support from the National Natural Science Foun-
dation of China (No. 21174096, 21274100, 21234005), the
Specialized Research Fund for the Doctoral Program of Higher
Education (No. 20123201130001), the Project of Science and
Technology Development Planning of Suzhou (No. ZXG201413,
SYG201430), the Project of Science and Technology Develop-
ment Planning of Jiangsu Province (No. BK20141192), and the
Project Funded by the Priority Academic Program Develop-
ment of Jiangsu Higher Education Institutions (PAPD) is grate-
fully acknowledged.
25 A. N. Morin, C. Detrembleur, P. De Tullio, R. Poli, A.
Debuigne, Macromolecules 2013, 46, 4303–4312.
26 S. Perrier, P. Takolpuckdee, J. Polym. Sci. Part A: Polym.
Chem. 2005, 43, 5347–5393.
27 M. H. Stenzel, L. Cummins, G. E. Roberts, T. P. Davis, P.
Vana, C. Barner-Kowollik, Macromol. Chem. Phys. 2003, 204,
1160–1168.
28 P. E. Dufils, G. David, B. Boutevin, G. Woodward, G. Otter,
A. Guinaudeau, S. Mazie`res, M. Destarac, J. Polym. Sci. Part A:
Polym. Chem. 2012, 50, 1997–2007.
29 M. K. Ham, J. HoYouk, Y. K. Kwon, Y. J. Kwark, J. Polym.
Sci. Part A: Polym. Chem. 2012, 50, 2389–2397.
30 V. K. Patel, N. K. Vishwakarma, A. K. Mishra, C. S. Biswas,
B. Ray, J. Appl. Polym. Sci. 2012, 125, 2946–2955.
REFERENCES AND NOTES
1 W. A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci. 2007,
32, 93–146.
31 D. Tastet, M. Save, F. Charrier, B. Charrier, J. B. Ledeuil, J.
C. Dupin, L. Billon, Polymer 2011, 52, 606–616.
2 L. J. Bai, L. F. Zhang, Z. B. Zhang, J. Zhu, N. C. Zhou, Z. P.
Cheng, X. L. Zhu, J. Polym. Sci., Part A: Polym. Chem. 2011,
49, 3970–3979.
32 Y. G. Li, Y. Q. Zhang, D. Yang, C. Feng, S. J. Zhai, J. H. Hu,
G. L. Lu, X. Y. Huang, J. Polym. Sci., Part A: Polym. Chem.
2009, 47, 6032–6043.
3 H. J. Jiang, L. F. Zhang, J. L. Pan, X. W. Jiang, Z. P. Cheng,
X. L. Zhu, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2244–
2253.
33 M. K. Ham, J. HoYouk, Y. K. Kwon, Y. J. Kwark, J. Polym.
Sci. Part A: Polym. Chem. 2012, 50, 2389–2397.
34 A. L. Kovarskii, High-Pressure Chemistry and Physics of
Polymers, CRC Press: Boca Rotan, FL, 1994.
4 X. Y. Jiang, G. L. Lu, C. Feng, Y. J. Li, X. Y. Huang, Polym.
Chem. 2013, 4, 3876–3884.
35 T. Arita, M. Buback, O. Janssen, P. Vana, Macromol. Rapid
Commun. 2004, 25, 1376–1381.
5 X. M. Song, W. Q. Yao, G. L. Lu, Y. J. Li, X. Y. Huang, Polym.
Chem. 2013, 4, 2864–2875.
36 J. Rzayev, J. Penelle, Angew. Chem. Int. Ed. 2004, 43, 1691–
6 X. H. Wei, G. Moad, B. W. Muir, E. Rizzardo, W. T. Yang, S.
H. Thang, Macromol. Rapid Commun. 2014, 35, 840–845.
1694.
37 T. Arita, Y. Kayama, K. Ohno, Y. Tsujii, T. Fukuda, Polymer
2008, 49, 2426–2429.
7 X. Y. Du, J. L. Pan, M. T. Chen, L. F. Zhang, Z. P. Cheng, X. L.
Zhu, Chem. Commun. 2014, 50, 9266–9299.
38 L. Mueller, W. Jakubowski, K. Matyjaszewski, J. Pietrasik, P.
Kwiatkowski, W. Chaladaj, J. Jurczak, Eur. Polym. J. 2011, 47,
730–734.
8 S. Yamago, Chem. Rev. 2009, 109, 5051–5068.
9 C. Boyer, V. Bulmus, T. P. Davis, V. Ladmiral, J. Liu, S.
Perrier, Chem. Rev. 2009, 109, 5402–5436.
39 G. Pound, F. Aguesse, J. B. McLeary, R. F. M. Lange, B.
Klumperman, Macromolecules 2007, 40, 8861–8871.
10 H. Lee, R. Mensire, R. E. Cohen, M. F. Rubner, Macromole-
cules 2011, 45, 347–355.
40 S. Wakamoriy, O. Yoshida, T. Tsuchidate, Y. Ishii, Agr. Biol.
Chem. 1969, 33, 1691–1699.
11 K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869–1880.
41 G. Moad, J. Chiefari, J. Krstina, R. T. A. Mayadunne, A.
Postma, E. Rizzardo, S. H. Thang, Polym. Int. 2000, 49, 993–1001.
12 K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M.
Shakesheff, Chem. Rev. 1999, 99, 3181–3198.
42 S. R. S. Ting, T. P. Davis, P. B. Zetterlund, Macromolecules
2011, 44, 4187–4193.
13 M. Dubininkas, G. Buika, Chin. J. Polym. Sci. 2013, 31,
346–354.
43 L. Lv, W. X. Wu, G. Zou, Q. J. Zhang, Polym. Chem. 2013, 4,
908–911.
14 M. Wakioka, K. Y. Baek, T. Ando, M. Kamigaito, M.
Sawamoto, Macromolecules 2002, 35, 330–333.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2015, 53, 1430–1436
1435