Journal of the American Chemical Society
Page 12 of 14
(1) For selected reviews, see: (a) Ruiz-Castillo, P.; Buchwald, S.
Chlorides, Sulfamates, Mesylates, and Triflates. Org. Lett. 2013,
16, 220–223.
(16) Shields, J. D.; Gray, E. E.; Doyle, A. G. A Modular, Air-Stable
Nickel Precatalyst. Org. Lett. 2015, 17, 2166–2169.
(17) Kampmann, S. S.; Skelton, B. W.; Wild, D. A.; Koutsantonis,
G. A.; Stewart, S. G. An Air-Stable Nickel(0) Phosphite
Precatalyst for Primary Alkylamine C-N Cross-Coupling
Reactions. Eur. J. Org. Chem. 2015, 2015, 5995–6004.
(18) Iglesias, M. J.; Prieto, A.; Nicasio, M. C. Well-Defined
L. Applications of Palladium-Catalyzed C–N Cross-Coupling
Reactions. Chem. Rev. 2016, 116, 12564–12649. (b) Beletskaya,
I. P.; Cheprakov, A. V. The Complementary Competitors:
Palladium and Copper in C–N Cross-Coupling Reactions.
Organometallics 2012, 31, 7753–7808. (c) Fischer, C.; Koenig,
B. Palladium- and Copper-Mediated N-Aryl Bond Formation
Reactions for the Synthesis of Biological Active Compounds.
Beilstein J. Org. Chem. 2011, 7, 59–74.
1
2
3
4
5
6
7
8
9
(2) Brown, D. G.; Boström, J. Analysis of Past and Present
Synthetic Methodologies on Medicinal Chemistry: Where Have
All the New Reactions Gone? J. Med. Chem. 2016, 59, 4443–
4458.
Allylnickel
Chloride/N-Heterocyclic
Carbene
[(NHC)Ni(Allyl)Cl] Complexes as Highly Active Precatalysts for
C–N and C–S Cross-Coupling Reactions. Adv. Synth. Catal.
2010, 352, 1949–1954.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) (a) Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L.
Breaking the Base Barrier: an Electron-Deficient Palladium
Catalyst Enables the Use of a Common Soluble Base in C–N
Coupling. J. Am. Chem. Soc. 2018, 140, 4721–4725. (b) Lee, H.
G.; Lautrette, G.; Pentelute, B. L.; Buchwald, S. L. Palladium-
Mediated Arylation of Lysine in Unprotected Peptides. Angew.
Chem. Int. Ed. 2017, 56, 3177–3181. (c) Balraju, V.; Iqbal, J.
Synthesis of Cyclic Peptides Constrained with Biarylamine
Linkers Using Buchwald−Hartwig C−N Coupling#. J. Org.
Chem. 2006, 71, 8954–8956.
(4) For selected reviews, see: (a) Yan, M.; Kawamata, Y.; Baran,
P. S. Synthetic Organic Electrochemical Methods Since 2000: on
the Verge of a Renaissance. Chem. Rev. 2017, 117, 13230–13319.
(b) Horn, E. J.; Rosen, B. R.; Baran, P. S. Synthetic Organic
Electrochemistry: an Enabling and Innately Sustainable
Method. ACS Cent. Sci. 2016, 2, 302–308. (c) Francke, R.;
Little, R. D. Redox Catalysis in Organic Electrosynthesis: Basic
Principles and Recent Developments. Chem. Soc. Rev. 2014, 43,
2492–2521. (d) Yoshida, J.-I.; Kataoka, K.; Horcajada, R.;
Nagaki, A. Modern Strategies in Electroorganic Synthesis. Chem.
Rev. 2008, 108, 2265–2299. (e) Moeller, K. D. Synthetic
Applications of Anodic Electrochemistry. Tetrahedron 2000,
56, 9527.
(5) O'Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran,
P. S.; Blackmond, D. G. Radical C–H Functionalization of
Heteroarenes Under Electrochemical Control. Angew. Chem.
Int. Ed. 2014, 53, 11868–11871.
(6) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.;
Eastgate, M. D.; Baran, P. S. Scalable and Sustainable
Electrochemical Allylic C–H Oxidation. Nature 2016, 533, 77–
81.
(7) Kawamata, Y.; Yan, M.; Liu, Z.; Bao, D.-H.; Chen, J.; Starr, J.
T.; Baran, P. S. Scalable, Electrochemical Oxidation of
Unactivated C–H Bonds. J. Am. Chem. Soc. 2017, 139, 7448–
7451.
(8) Li, C.; Kawamata, Y.; Nakamura, H.; Vantourout, J. C.; Liu,
Z.; Hou, Q.; Bao, D.; Starr, J. T.; Chen, J.; Yan, M.; Baran, P. S.
Elec-trochemically Enabled, Nickel-Catalyzed Amination.
Angew. Chem. Int. Ed. 2017, 56, 13088–13093.
(9) Marín, M.; Rama, R. J.; Nicasio, M. C. Ni-Catalyzed
Amination Reactions: an Overview. Chem. Rec. 2016, 16, 1819–
1832.
(10) Hughes, E. C.; Veatch, F.; Elersich, V. N-Methylaniline
From Chlorobenzene and Methylamine. Ind. Eng. Chem. 1950,
42, 787–790.
(11) Cramer, R.; Coulson, D. R. Nickel-Catalyzed Displacement
Reactions of Aryl Halides. J. Org. Chem. 1975, 40, 2267–2273.
(12) Cristau, H.-J.; Desmurs, J.-R. Arylation of Hard
Heteroatomic Nucleophiles Using Bromoarenes Substrates and
Cu, Ni, Pd-Catalysts; Industrial Chemistry Library; Elsevier,
1995; Vol. 7, pp 240–263.
(13) Wolfe, J. P.; Buchwald, S. L. Nickel-Catalyzed Amination of
Aryl Chlorides. J. Am. Chem. Soc. 1997, 119, 6054–6058.
(14) Kelly, R. A.; Scott, N. M.; Díez-González, S.; Stevens, E. D.;
Nolan, S. P. Simple Synthesis of CpNi(NHC)Cl Complexes (Cp =
(19) (a) Ge, S.; Green, R. A.; Hartwig, J. F. Controlling First-Row
Catalysts: Amination of Aryl and Heteroaryl Chlorides and
Bromides with Primary Aliphatic Amines Catalyzed by a BINAP-
Ligated Single-Component Ni(0) Complex. J. Am. Chem. Soc.
2014, 136, 1617–1627. (b) Lavoie, C. M.; MacQueen, P. M.;
Rotta-Loria, N. L.; Sawatzky, R. S.; Borzenko, A.; Chisholm, A.
J.; Hargreaves, B. K. V.; McDonald, R.; Ferguson, M. J.;
Stradiotto, M. Challenging Nickel-Catalysed Amine Arylations
Enabled by Tailored Ancillary Ligand Design. Nature Commun.
2016, 7, 1–11. (c) Lavoie, C. M.; MacQueen, P. M.; Stradiotto, M.
Nickel-Catalyzed N-Arylation of Primary Amides and Lactams
with Activated (Hetero)Aryl Electrophiles. Chem. Eur. J. 2016,
22, 18752–18755. (d) MacQueen, P. M.; Tassone, J. P.; Diaz, C.;
Stradiotto, M. Exploiting Ancillary Ligation to Enable Nickel-
Catalyzed C–O Cross-Couplings of Aryl Electrophiles with
Aliphatic Alcohols. J. Am. Chem. Soc. 2018, 140, 5023–5027. (e)
Tassone, J. P.; England, E. V.; MacQueen, P. M.; Ferguson, M.
J.; Stradiotto, M. PhPAd-DalPhos: Ligand-Enabled, Nickel-
Catalyzed Cross-Coupling of (Hetero)Aryl Electrophiles with
Bulky Primary Alkylamines. Angew. Chem. Int. Ed. 2019, 58,
2485–2489.
(20) (a) Koo, K.; Hillhouse, G. L. Carbon-Nitrogen Bond
Formation by Reductive Elimination From Nickel(II) Amido
Alkyl Complexes. Organometallics 1995, 14, 4421–4423. (b)
Koo, K.; Hillhouse, G. L. Indoline Synthesis via Coupling of
Phenethyl Grignard Reagents with Organoazides Mediated by
(Alkylphosphine)Nickel(II) Complexes. Organometallics 1996,
15, 2669–2671. (c) Mindiola, D. J.; Hillhouse, G. L. Terminal
Amido and Imido Complexes of Three-Coordinate Nickel. J. Am.
Chem. Soc. 2001, 123, 4623–4624. (d) Lin, B. L.; Clough, C. R.;
Hillhouse, G. L. Interactions of Aziridines with Nickel
Complexes: Oxidative-Addition and Reductive-Elimination
Reactions That Break and Make C−N Bonds. J. Am. Chem. Soc.
2002, 124, 2890–2891.
(21) Ilies, L.; Matsubara, T.; Nakamura, E. Nickel-Catalyzed
Synthesis of Diarylamines via Oxidatively Induced C–N Bond
Formation at Room Temperature. Org. Lett. 2012, 14, 5570–
5573.
(22) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.;
DiRocco, D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W.
C. Aryl Amination Using Ligand-Free Ni(II) Salts and
Photoredox Catalysis. Science 2016, 353, 279–283.
(23) Vander Griend, D. A.; Bediako, D. K.; DeVries, M. J.;
DeJong, N. A.; Heeringa, L. P. Detailed Spectroscopic,
Thermodynamic, and Kinetic Characterization of Nickel(II)
Complexes with 2,2’-Bipyridine and 1,10-Phenanthroline
Attained via Equilibrium-Restricted Factor Analysis. Inorg.
Chem. 2008, 47, 656–662.
(24) Lappin, A. G.; McAuley, A. The Redox Chemistry of Nickel;
Advances in Inorganic Chemistry; Elsevier, 1988; Vol. 32, pp
241–295.
(25) Lim, C.-H.; Kudisch, M.; Bin Liu; Miyake, G. M. C–N Cross-
Coupling via Photoexcitation of Nickel–Amine Complexes. J.
Am. Chem. Soc. 2018, 140, 7667–7673.
(26) DMA seems to be oxidized under the reaction conditions as
evident from the formation of aminal product 52b. However,
this oxidation is likely to prevent undesirable consumption of
amine nucleophile.
Cyclopentadienyl;
Organometallics 2005, 24, 3442–3447.
NHC
=
N-Heterocyclic
Carbene).
(15) Park, N. H.; Teverovskiy, G.; Buchwald, S. L. Development
of an Air-Stable Nickel Precatalyst for the Amination of Aryl
ACS Paragon Plus Environment