M. Abdaoui et al. / Tetrahedron 56 (2000) 2427–2435
2429
´
´
Tableau 1. Caracteristiques Physicochimiques et Spectroscopiques des N-sulfamoylaminoacides substitues 2–5, 8–20
Ref
Masse, formule brute, rendement,
IR: n cmϪ1 KBr (s) ou
film (l) (Perkin–Elmer
IR 10)
RMN 1H: (d ppm; CDCl3, sauf 10, 16, 18, 19 dans DMSO-d6).
point de fusion Rf (solvant)
Bruker AC 250 et DX 400.
2
3
4
5
350.43 [C14H26N2O6S]; 67%; 116–
118ЊC; 0.55 (CH2Cl2/MeOH 99/1).
3200 (NH), 1750, 1720
(CO), 1365, 1145 (SO2).
7.40 (s, 1H, NH), 4.55 (dd, J3.25, 7.44 Hz, 1H, CH), 3.70–
3.50 (m, 2H, CH2N), 2.30–2.00 (2m, 4H, 2 CH2), 1.50 et 1.45
(2s, 18H, 2t Bu).
400.49 [C18H28N2O6S]; 75%; 107–
108ЊC; 0.86 (AcOEt).
3350, 3250 (NH), 1750,
1720 (CO), 1370, 1155
(SO2).
1750–1710 (CO), 1360,
1135 (SO2).
7.20 (m, 6H, NHBOC et ArH), 5.15 (d, J7.0 Hz, 1H, NHCء
),
4.25 (q, J5.85 Hz, 1H, Cء
H), 3.05 (m, 2H, CH2Bn), 1.40 (s,
9H, t Bu est.), 1.30 (s, 9H, BOC).
412.92 [C16H29N2O6ClS]; 80%;
huile; 0.65 (CH2Cl2/MeOH: 99-1).
4.5 (dd, J3.2, 7.5 Hz, 1H, CH), 3.95 (t, 2H, CH2N), 3.65 (t,
J6,2 Hz, 2H, CH2Cl), 3.65–3.40 (t, J6.2 Hz, 2H, CH2N Pro),
2.25–1.90 (2m, 1Hϩ3H, CH2), 1.5 et 1.44 (2s, 18H, 2 t Bu).
7.20 (m, 5H, ArH), 5.75 (d, J7.8 Hz,1H, NHCء
), 4.20 (q,
J5.15 Hz, 1H, Cء
H), 3.85 (t, J6.35 Hz, 2H, CH2N), 3.60 (t,
2H, CH2Cl), 3.05 (m, 2H, CH2 Bn), 1.45 (s, 9H, t Bu est.), 1.30
(s, 9H, BOC).
462.98 [C20H31N2O6ClS]; 72%;
69ЊC; 0.95 (CH2Cl2/MeOH: 95/5).
3300 (NH), 1750, 1700
(CO), 1370, 1150 (SO2).
8
238.21 [C6H10N2O6S]; 83%; 147–
148ЊC; 0.36 (CH2Cl2/MeOH: 95/5).
252.24 [C7H12N2O6S]; 88%; 85–
87ЊC; 0.79 (CH2Cl2/MeOH: 95/5).
226.06 [C6H14N2O5S]; 32%; huile;
0.32 (CH2Cl2: 95/5).
3300 (NH), 1755, 1740
(CO), 1365, 1140 (SO2).
1760, 1740 (CO) 1360,
1140 (SO2).
3500 (OH), 3200 (NH)
1740 (CO), 1340, 1140
(SO2).
5.10 (t, J7.0 Hz, 1H, NH), 4.40 (t, J7.81 Hz, 2H, CH2N),
4.03 (m, 4H, CH2O et CH2NH), 3.75 (s, 3H, CH3O).
4.35 (t, J7.9 Hz, 2H, CH2N), 4.15 (s, 2H, CH2NMe), 4.05 (t,
J7.9 Hz, 2H, CH2O), 3.70 (s, 3H, MeO), 3.05 (s, 3H, CH3N).
5.20 (t, 1H, NH), 4.05 (s, 2H, CH2NMe), 3.90 (t, J5 Hz, 2H,
CH2O), 3.68 (s, 3H, OMe), 3.12 (q, J5 Hz, 2H, CH2N), 2.85 (s,
3H, MeN), 2.50 (s, 1H, OH).
9
10
11
12
13
14
256.70 [C7H13N2O4ClS]; 70%; 54–
56ЊC; 0.74 (AcOEt/AcOH: 3/1).
3400 (OH), 3200 (NH)
1730 (CO), 1380, 1140
(SO2).
3350 (NH), 1755 (CO),
1355, 1130 (SO2)
8.20 (s,1H,OH), 4.98 (t, J7.5 Hz, 1H, NH), 4.45 (q, 1H, CH),
3.70 (t, J6.0 Hz, 2H, CH2Cl), 3.45 (m, 4H, CH2N et CH2N
Pro), 2.35–1.95 (m, 4H, 2 CH2 Pro).
270.73 [C8H15N2O4ClS]; 79%; 69–
71ЊC; 0.84 (CH2Cl2/MeOH: 98/2).
4.97 (t, J7 Hz, 1H, NH), 4.38 (m, 1H, CH), 3.52 (s, 3H, OMe),
3.66 (m, 2H, CH2Cl), 3.44 (m, 4H, CH2NH, CH2N Pro), 2.20–
1.90 (m, 4H, 2 CH2 Pro).
306.76 [C11H15N2O4ClS]; 75%;
104–106ЊC; 0.20 (CH2Cl2/MeOH:
95/5).
386.89 [C14H27N2O6ClS]; 70%;
huile; 0.91 (CH2Cl2/MeOH: 98-2).
3500 (OH), 3320 (NH)
1750 (CO), 1360, 1150
(SO2).
3300, 3250 (NH), 1755
(CO), 1360, 1140 (SO2).
7.20 (m, 6H, ArHϩOH), 5.00 (d, J7,1 Hz; 1H, NHCء
), 4.70 (t,
J6,1 Hz,1H, NHCH2), 4.20 (m, 1H, Cء
H), 3.65 (t, J6,1 Hz,
2H, CH2Cl), 3.45 (q, 2H, CHN), 2.90 (m, 2H, CH2 Bn).
5.45 (d, J7,5 Hz, 1H, NHCء
), 4,95 (t, J6,1 Hz, 1H, NHCH2),
4,05 (m,1H, Cء
H), 3,65 (t, J6.2 Hz, 2H, CH2Cl) 3.38 (q, 2H,
CH2NH), 2.78 (ddd, JϪ17.5 Hz; 6.4 et 3.9 Hz; 2H, CH2Cء
),
1.42–1.38 (2s, 18H, 2 tBu).
15
16
17
18
19
20
244.69 [C6H13N2O4SCl]; 60%; huile;
0.79 (CH2Cl2/MeOH: 95/5).
3350 (NH), 1740 (CO),
1335, 1120 (SO2).
5.15 (t, 1H, NH), 4.00 (s, 2H, CH2NMe), 3.72 (s, 3H, OMe), 3,64
(t, J6.4 Hz, 2H, CH2Cl), 3.5 (q, 2H, CH2NH), 2.88 (s, 3H,
CH3N).
7.15 (s, 1H, OH), 4.70–4.45 (2d, J7.1 Hz et 3.8 Hz, 1H, CH),
3.75 (t, J6.1 Hz 2H, CH2N), 3.55 (m, 4H, CH2Cl et CH2N Pro),
2.35–2.00 (2m, 1Hϩ3H, 2 CH2 Pro).
4.50–4.35 (2d, J7.0 Hz et 4.0 Hz; 1H, CH), 3.95 (t, J6.3 Hz;
2H, CH2N–NO), 3.70 (s, 3H, OMe), 3.65–3.45 (m, 4H, CH2Cl
et CH2N Pro), 2.40–2.00 (2m, 1Hϩ3H, 2 CH2 Pro).
8.10 (s large, 1H, COOH), 7.30–7.10 (m, 5H, ArH), 5.05 (d,
J7.1 Hz; 1H, NH), 4.50 (m, 1H, Cء
H), 3.80 (t, J6.7 Hz; 2H,
CH2N–NO), 3.55 (t, 2H, CH2Cl), 3.10 (m, 2H, CH2 Phe).
9.30–8.50 (large s, 2H, COOH), 6.80 (d, J7.1 Hz, 1H, Cء
NH),
4.48 (m, 1H, Cء
H), 3.88 (t, J6.6 Hz; 2H, CH2N–NO), 3.55 (t,
2H, CH2Cl), 2.90–2.75 (ddd, JϪ16.5; 6.5 et 3.3 Hz; 2H, CH2).
4.15 (s, 2H, CH2NMe), 4.05 (t, J6.6 Hz; 2H, CH2N–NO), 3.72
(s, 3H, MeO), 3.47 (t, 2H, CH2Cl), 3.10 (s, 3H, NMe).
285.70 [C7H12N3O5SCl]; 90%; 97–
98ЊC; 0.84 (AcOEt–AcOH: 3/1).
3400 (OH), 1710 (CO),
1515 (NO), 1390, 1150
(SO2).
1740 (CO), 1555 (NO),
1380, 1160 (SO2).
299.03 [C8H14N3O5ClS]; 95%; huile;
0.77 (CH2Cl2).
335.76 [C11H14N3O5ClS]; 90%;
huile; 0.81 (AcOEt–AcOH: 9/1).
3400 (OH), 3250 (NH)
1710 (CO), 1570 (NO)
1365, 1155 (SO2).
3400 (OH), 3300 (NH)
1725 (CO),1565 (NO)
1365, 1165 (SO2).
303.67 [C6H10N3O7ClS]; 55%; 85ЊC
´
(dec); 0.52 (AcOEt/AcOH: 9/1).
273.69 [C6H12N3O5ClS]; 95%; huile;
0.90 (CH2Cl2).
1735 (CO), 1560 (NO)
1370, 1140 (SO2).
`
entre deux positions (a et b, dans un rapport de 6:4). Apres
affinement isotrope (R0.11), puis anisotrope (R0.072),
Tableau 2.
`
les atomes d’hydrogene—en particulier ceux des motifs
´
´
carboxyliques—sont localises par Fourier difference
`
Systeme
Ortho-
rhombique
P21212
10.426 (9) Max 2Q (Њ)
Ϫ3
˚
`
´ ´
´
(entre 0.6 et 0.15 A ). La structure complete a ete affinee
par la methode des moindres carres.
16,17
´
´
Groupe
Radiation
MoKa
50Њ
a
b
c
V
Z
18.544 (2) Passages
´ ´
6.369 (6) Reflexions mesurees 1299
v/2Q1
´
´
´
L’empilement moleculaire est conditionne par la dimerisa-
´
tion carboxylique (Fig. 3); la structure associee est dis-
symetrique et presente un axe C2. En raison de la nature
tetraedrique du groupement sulfonyle, on ne peut definir
´ ´
1231 (2) Reflexions observees (IϾs(I))761 (3s)
´
´
´
4
Fourier difference
0.34–0.18
761/155
0.054
0.053
1.157
r calc g cmϪ3
F(000)
1.541
592
4.833
293
N(obs)/N(var)
R Final
Rw
´
`
´
´ ´
`
stricto sensu de stereoisomeres E ou Z comme pour les
m (MoKa) cmϪ1
T ЊK
´
´
´
derives N-acyles de la proline; on observe toutefois que
les liaisons S–O4 et N1–C4 sont anticoplanaires (angle
Sw