6130
J. Am. Chem. Soc. 2000, 122, 6130-6131
Scheme 1
A Kinetically Inert Proton on a Metal-Metal Bond
in [{(η5-C5H3)2(SiMe2)2}Ru2(CO)4(µ-H)]+ that
Promotes Reactions with Amines
Maxim V. Ovchinnikov and Robert J. Angelici*
Department of Chemistry, Iowa State UniVersity
Ames, Iowa 50011
ReceiVed March 13, 2000
Unsaturated ligands in transition metal complexes can be
activated to nucleophilic attack by creating a positive charge on
the complex.1 Carbon monoxide ligands are activated to attack
by amine nucleophiles when the positive charge on a complex is
sufficiently high to give CtO stretching force constants, kCO, that
are higher than 16.5 mdyn/Å (or ν(CO) values higher than
approximately 2000 cm-1).2 These reactions lead to carbamoyl
complexes (eq 1), and some reactions give formamides and ureas
the slow rate of deprotonation of 1H+ thereby allowing nucleo-
philic attack on a CO ligand.
10
The reaction of (C5H4)2(SiMe2)2 with Ru3(CO)12 in the
presence of the hydrogen acceptor 1-dodecene furnished {(η5-
C5H3)2(SiMe2)2}Ru2(CO)4 (1) in 72% yield, as an air- and
moisture-stable yellow solid (Scheme 1).11 The hydride-bridged
dinuclear Ru complex12 1H+ was formed in quantitative yield
upon addition of 1 equiv of HBF4‚OEt2 or CF3SO3D to a solution
of complex 1 in CH2Cl2 at room temperature. The Ru-H
catalytically.3 One approach to making a complex more positive
is to add a proton (H+) to the metal (eq 2). While numerous metal
carbonyl complexes have been protonated,4 the CO ligands in
1
resonance in the H NMR spectrum occurs as a singlet at δ
-19.92 ppm. The CO stretching frequencies for 1H+ are
approximately 67 cm-1 higher than those for 1 and fall within
the range where amine attack on the CO groups is expected to
occur.2 An X-ray diffraction study of 1H+BF4- reveals an eclipsed
orientation of the terminal CO ligands on the two Ru atoms. The
M(L)x(CO)y + H+ f H-M(L)x(CO)y+
(2)
these complexes either do not react with amines because their
kCO and ν(CO) values are insufficiently high or the amine bases
simply deprotonate the metal to give the unreactive neutral
complex M(L)x(CO)y. This rapid deprotonation occurs for a wide
range of cationic metal hydride complexes H-M(L)x(CO)y+.5,4b
Neutral H-M(L)x(CO)y complexes often undergo deprotonation
much more slowly,6 but their kCO and ν(CO) values are not
sufficiently high to promote attack by amines. Di- and polynuclear
metal complexes with M-H-M bridging hydrides also undergo
rapid deprotonation with bases.7,8 In this communication we
describe a cationic dinuclear complex [{(η5-C5H3)2(SiMe2)2}Ru2-
(CO)4(µ-H)]+ (1H+) whose high ν(CO) values promote amine
attack but is only slowly deprotonated by amines. The bridging
dicyclopentadienyl (η5-C5H3)2(SiMe2)2 ligand9 with two SiMe2
groups linking the cyclopentadienyl rings is a key contributor to
-
Ru-Ru distance is substantially longer in 1H+BF4 (3.1210(5)
Å) than in 1 (2.8180(3) Å).13
Compound 1H+ is exceptionally stable with respect to depro-
tonation by strong organic bases such as Et3N, quinuclidine, or
pyridine. Less than 2% of the complex was deprotonated after 1
h in CD3NO2 or CD3CN solution in the presence of 10-fold
excesses of these amines. Moreover, the deuterated complex
1D+TfO- in wet acetone solution (∼10% H2O) did not undergo
measurable H-D exchange after 5 days at 25 °C. In contrast to
1H+, the unbridged and monobridged complexes (η5-C5H5)2Ru2-
(CO)4(µ-H)+ 14a and {(η5-C5H4)2(SiMe2)}Ru2(CO)4(µ-H)+ 14b were
deprotonated instantly and quantitatively by bases such as pyridine
or diethylamine. The acidity of 1H+BF4 , estimated as pKaAN from
-
studies of the equilibrium constant for the proton-transfer reaction
(1) Bush, R. C.; Angelici, R. J. J. Am. Chem. Soc. 1986, 108, 2735.
(2) Angelici, R. J. Acc. Chem. Res. 1972, 5, 335.
(3) (a) McCusker, J. E.; Logan, J.; McElwee-White, L. Organometallics
1998, 17, 4037. (b) McCusker, J. E.; Abboud, K. A.; McElwee-White, L.
Organometallics 1997, 16, 3863. (c) McCusker, J. E.; Grasso, C. A.; Main,
A. D.; McElwee-White, L. Org. Lett. 1999, 1, 961. (d) Dombek, B. D.;
Angelici, R. J. J. Catal. 1977, 48, 433.
(10) (a) Siemeling, U.; Jutzi, P.; Neumann, B.; Stammler, H. G.; Hursthouse,
M. B. Organometallics 1992, 11, 1328. (b) Hiermeier, J.; Koehler, F. H.;
Mueller, G. Organometallics 1991, 10, 1787.
(11) In a typical procedure, a solution of Ru3(CO)12 (50.0 mg, 78.2 µmol),
(C5H4)2(SiMe2)2 (28.6 mg, 117.0 µmol), and 1-dodecene (260.0 mg, 2.4 mmol)
in heptane (30 mL) was heated to reflux for 18 h. The mixture was
chromatographed on an alumina column (1 × 20 cm) first with hexanes and
then with a 1:10 (v/v) mixture of CH2Cl2 and hexanes which eluted a yellow
band containing 1 (47 mg, 72%). 1H (400 MHz, CDCl3): δ 0.26 (s, 6 H,
Si(CH3)), 0.46 (s, 6 H, Si(CH3)), 5.37 (d, J ) 1.6 Hz, 4 H, Cp-H), 5.78 (t, J
) 1.6 Hz, 2 H, Cp-H). 13C (100 MHz, CDCl3): δ -2.25 (CH3), 4.53 (CH3),
87.72, 93.95, 95.57 (Cp), 204.57 (CO). IR (CH2Cl2): ν(CO) (cm-1) 2015
(vs), 1952 (vs). Anal. Calcd for C18H18O4Ru2Si2: C, 38.84; H, 3.26. Found:
C, 39.05; H, 3.32.
(4) (a) Angelici, R. J. Acc. Chem. Res. 1995, 28, 52. (b) Kristja´nsdo´ttir, S.
S.; Norton, J. R. In Transition Metal Hydrides: Recent AdVances in Theory
and Experiments; Dedieu, A., Ed.; VCH: New York, 1991; Chapter 10. (c)
Pearson, R. G. Chem. ReV. 1985, 85, 41. (d) Martinho Simo˜es, J. A.;
Beauchamp, J. L. Chem. ReV. 1990, 90, 629. (e) Bullock, R. M. Comments
Inorg. Chem. 1991, 12, 1.
(5) Jia, G.; Morris, R. H. Inorg. Chem. 1990, 29, 582.
(6) (a) Edidin, R. T.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1987,
109, 3945. (b) Moore, E. J.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc.
1986, 108, 2257. (c) Jordan, R. F.; Norton, J. R. J. Am. Chem. Soc. 1982,
104, 1255.
(12) 1H+BF4-): 1H (400 MHz, CD2Cl2): δ -19.92 (s, 1 H, Ru-H-Ru),
0.47 (s, 6 H, Si(CH3)), 0.62 (s, 6 H, Si(CH3)), 5.99 (d, J ) 2.0 Hz, 4 H,
Cp-H), 6.02 (t, J ) 2.0 Hz, 2 H, Cp-H). 13C (100 MHz, CD2Cl2): δ -2.57
(CH3), 2.86 (CH3), 88.97, 98.56, 98.81 (Cp), 195.19 (CO). IR (CH2Cl2): ν-
(CO) (cm-1) 2077 (vs), 2050 (w), 2027 (s). Anal. Calcd for C18H19BF4O4-
Ru2Si2: C, 33.55; H, 2.97. Found: C, 33.19; H, 2.90.
(7) (a) Nataro, C.; Thomas, L. M.; Angelici, R. J. Inorg. Chem. 1997, 36,
6000. (b) Nataro, C.; Angelici, R. J. Inorg. Chem. 1998, 37, 2975.
(8) (a) Weberg, R. T.; Norton, J. R. J. Am. Chem. Soc. 1990, 112, 1105.
(b) Kristja´nsdo´ttir, S. S.; Moody, A. E.; Weberg, R. T.; Norton, J. R.
Organometallics 1988, 7, 1983.
(13) Details of the X-ray diffraction studies of 1, 1H+BF4-, and 2a will be
published separately: Ovchinnikov, M. V.; Guzei, I. A.; Angelici, R. J.
Manuscript in preparation.
(9) For recent examples of (η5-C5H3)2(SiMe2)2 complexes, see: (a) Sun,
H.; Teng, X.; Huang, X.; Hu, Z.; Pan, Y. J. Organomet. Chem. 2000, 595,
268. (b) Cano, A. M.; Cano, J.; Cuenca, T.; Go´mez-Sal, P.; Manzanero, A.;
Royo, P. Inorg. Chim. Acta 1998, 280, 1.
(14) (a) Ovchinnikov, M. V.; Angelici, R. J. Unpublished results. (b)
Froehlich, R.; Gimeno, J.; Gonzalez-C. M.; Lastra, E.; Borge, J.; Garcia-G.
S. Organometallics 1999, 18, 3008.
10.1021/ja000883u CCC: $19.00 © 2000 American Chemical Society
Published on Web 06/08/2000