10.1002/anie.201802123
Angewandte Chemie International Edition
COMMUNICATION
[15] a) F. M. Perna, A. Salomone, M. Dammacco, S. Florio, V. Capriati, Chem.
Eur. J. 2011, 17, 8216.
Keywords: Grignard reagent • halogen-magnesium exchange •
lithium • magnesium • toluene
[16] a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T.
Korn, I. Sapountzis, V. A. Vu, Angew. Chem. Int. Ed. 2003, 42, 4302. b)
M. Hatano, S. Suzuki, K. Ishihara, J. Am. Chem. Soc. 2006, 128, 9998.
c) M. Hatano, O. Ito, S. Suzuki, K. Ishihara, J. Org. Chem. 2010, 75, 5008.
[17] Notable exceptions: a) C. Vidal, J. García-Álvarez, A. Hernán-Gómez, A.
R. Kennedy, E. Hevia, Angew. Chem. Int. Ed. 2014, 53, 5969. b) L. Cicco,
S. Sblendorio, R. Mansueto, F. M. Perna, A. Salmone, S. Florio, V.
Capriati, Chem. Sci. 2016, 7, 1192.
[1]
[2]
[3]
Handbook of Functionalized Organometallics (Ed.: P. Knochel), Wiley-
VCH Verlag GmbH & Co KGaA, Weinheim, 2005.
Grignard Reagents, New Developments (Ed.: H. G. Jr. Richey.), Wiley-
VCH Verlag GmbH & Co KGaA, Weinheim, 2000.
a) R. D. Rieke, T.-J. Li, T. P. Burns, S. T. Uhm, J. Org. Chem. 1981, 46,
4324. b) R. D. Rieke, Science 1989, 246, 1260. c) Active Metals (Ed.: A.
Fuerstner), Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, 1995. d) J.
Lee, R. Velarde-Ortitz, A. Guijarro, J. R. Wurst, R. D. Rieke, J. Org. Chem.
2000, 65, 5428.
[18] S. M. Weinreb, S. Nahm, Tetrahedron Lett. 1981, 22, 3815.
[19] a) R. Peters, P. Waldmeier, A. Joncour, Org. Process Res. Dev. 2005, 9,
508. b) Y. Chen, M. Ellwart, G. Toupalas, Y. Ebe, P. Knochel, Angew.
Chem. Int. Ed. 2017, 56, 4612.
[4]
[5]
F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew.
Chem. Int. Ed. 2008, 47, 6802.
[20] a) M. J. Eis, J. E. Wrobel, B. Ganem J. Am. Chem. Soc. 1984, 106, 3693.
b) A. Alexakis, I. Marek, P. Mangeney, J. F. Normant, Tetrahedron Lett.
1989, 2387. c) Aziridines and Epoxides in Organic Synthesis (Ed: A.
Yudin), Wiley- VCH Verlag GmbH & Co KGaA, Weinheim, 2006. d) K. L.
Jensen, E. A. Standley, T. F. Jamison, J. Am. Chem. Soc 2014, 136,
11145.
a) E. Mulvey, F. Mongin, M. Uchiyama, Y. Kondo, Angew. Chem. Int. Ed.
2007, 46, 3802. b) B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel,
Angew. Chem. Int. Ed. 2011, 50, 9794. c) M. Balkenhohl, P. Knochel,
SynOpen 2018, 2, 78.
[6]
[7]
D. R. Rieke, M. S. Sell, In Handbook of Grignard reagents (Eds.: G. S.
Silvermann, P. E. Rakita) 1996.
[21] a) R. Martin, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3844. b) G.
Manolikakes, P. Knochel, Angew. Chem. Int. Ed. 2009, 48, 205. c) X.
Hua, J. Masson-Makdissi, R. J. Sullivan, S. G. Newman, Org. Lett. 2016,
18, 5312.
a) A. Krasvoskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333. b)
A. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed. 2006, 45,
159. c) L. Shi, Y. Chu, P. Knochel, H. Mayr, J. Org. Chem. 2009, 74,
2760. d) L. Shi, Y. Chu, P. Knochel, H. Mayr, Org. Lett. 2009, 11, 3502.
D. Tilly, F. Chevallier, F. Mongin, P. C. Gros, Chem. Rev. 2014, 114,
1207.
[22] R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461.
[23] Y.-H. Chen, M. Ellwart, V. Malakhov, P. Knochel, Synthesis 2017, 49,
3215.
[8]
[9]
a) C. G. Screttas, M. Micha-Screttas, J. Organomet. Chem. 1985, 290,
1. b) C. G. Screttas, B. R. Steele, J. Org. Chem. 1989, 54, 1013. c) T.
Iida, T. Wada, K. Tomimoto, T. Mase, Tetrahedron Lett. 2001, 42, 4841.
d) L. Chtcheglova, S. Carlotii, A. Deffieux, N. Poirier, M. Barbier, FR-
2840901, 2003. e) E. S. Baillie, T. D. Bluemke, A. R. Clegg, Kennedy, J.
Klett, L. Russo, M. de Tullio, E. Hevia, Chem. Commun. 2014, 50, 12859.
[24] a) D. Haas, J. M. Hammann, R. Greiner, P. Knochel, ACS Catal. 2016,
6, 1540. b) D.-Y. Wang, K. Morimoto, Z.-K. Yang, C. Wang, M. Uchiyama,
Chem. Asian J. 2017, 12, 2554.
[25] a) N. Hadei, E. A. B. Kantchev, C.J. O’Brie, J. Christopher, M. G. Organ,
Org. Lett. 2005, 7, 3805. b) C. Valente, M. E. Belowich, N. Hadei, M. G.
Organ, Eur. J. Org. Chem. 2010, 4343.
[10] a) Solvent Recovery Handbook (Ed.: I. M. Smallwood), Blackwell
Science Ltd., Oxford, 2002. b) L. Delhaye, A. Ceccato, P. Jacobs, C.
Köttgen, A. Merschaert, Org. Process Res. Dev. 2007, 11, 160.
[11] H. Thoms, M. Epple, H. Viebrock, A. Reller, J. Mater. Chem. 1995, 5,
589.
[26] Previously, we found that 9e is the only substrate, which undergoes a
fast mono-Cl/Mg-exchange using iPrMgCl·LiCl: M. Abarbri, J. Thibonnet,
L. Bérillon, F. Dehmel, M. Rottländer, P. Knochel, J. Org. Chem. 2000,
65, 4618.
[27] This ortho-methoxy group facilitates the coordination of the magnesium
exchange reagent (1b) and therefore accelerates the Cl/Mg-exchange.
Compare with: D. W. Slocum, E. A. Maulden, P. E. Whitley, T. K.
Reinscheld, C. S. Jackson, J. B. Maddox, Eur. J. Org. Chem. 2017, 6882.
[28] In the presence of a stronger directed metalation group (DMG) compared
to MeO, the Cl/Mg-exchange proceeds faster (see SI; example 14g).
[29] A patent application has been filed.
[12] Alternatively, a magnesium alkoxide solution (0.94 M in heptane) is
commercially available from Albemarle, Frankfurt: U. Wietelmann, U.
Emmel, J. Roeder, M. Steinbild, K. Papstein, K. (Albemarle), WO-
2010146122, 2010.
[13] The reactions were also performed in other apolar solvents such as
hexane and cyclohexane or in cyclopentyl methyl ether (CPME).
[14] Yield of 5a determined by GC-analysis of water quenched reaction
aliquots.
This article is protected by copyright. All rights reserved.