4274
of the C(1)-alcohol by DDQ induced deprotection, phosphatidylation with 11a, and oxidation
furnished 17a from which 5-PIP (3a) was obtained as its sodium salt by standard catalytic
hydrogenolysis.
Repetition of the ®nal condensations in Schemes 1±3 using 10/11b,c6 aorded 4/2/3b,d as
appropriate. The dioctanoyl glyceryl analogs (b-series) are more water soluble than the fatty acid
versions (a-series) and have proven more tractable in some assays. The o-aminoalkyl analogs
(d-series) can be derivatized with ¯uorescent, radioactive, and anity labels; their application in
the isolation of several speci®c PIP binding proteins will be reported elsewhere.
Acknowledgements
Supported ®nancially by the Robert A. Welch Foundation and NIH (GM31278, GM37922,
CA58291).
References
1. For a review, see: Rameh, L. E.; Cantley, L. C. J. Biol. Chem. 1999, 274, 8347±8350.
2. Nishizuka, Y. Science 1992, 258, 607±614.
3. Cantley, L. C.; Auger, K. R.; Carpenter, C.; Duckworth, B.; Graziani, A.; Kapeller, R.; Solto, S. Cell 1991, 64,
281±302. Martin, T. F. J. Ann. Rev. Cell Develop. Biol. 1998, 14, 231±264.
4. Auger, K. R.; Serunian, L. A.; Solto, S. P.; Libby, P.; Cantley, L. C. Cell, 1989, 57, 167±175. Dove, S. K.; Cooke,
F. T.; Douglas, M. R.; Sayers, L. G.; Parker, P. J.; Michell, R. H. Nature 1997, 390, 187±192. Jones, D. R.;
Gonzalez-Garcõa, A.; Dõez, E.; Martinez-A., C.; Carrera, A. C.; Merida, I. J. Biol. Chem. 1999, 274, 18407±18413.
5. Rameh, L. E.; Tolias, K. F.; Duckworth, B. C.; Cantley, L. C. Nature 1997, 390, 192±196. Whiteford, C. C.;
Brearley, C. A.; Ulug, E. T. Biochem. J. 1997, 323, 597±601.
6. 3,4-PIP2: Reddy, K. K.; Rizo, J.; Falck, J. R. Tetrahedron Lett. 1997, 38, 4729±4730. Reddy, K. K.; Ye, J.; Falck,
J. R.; Capdevila, J. H. Bioorg. Med. Chem. Lett. 1997, 7, 2115±2116. 3,4,5-PIP3: Reddy, K. K.; Saady, M.; Falck,
J. R.; Whited, G. J. Org. Chem. 1995, 60, 3385±3390. 4,5-PIP2: Falck, J. R.; Krishna, U. M.; Capdevila, J. H.
Tetrahedron Lett. 1999, 40, 8771±8774.
7. Previous syntheses of 5-PIP and/or 3,5-PIP2: Peng, J.; Prestwich, G. D. Tetrahedron Lett. 1998, 39, 3965±3968.
Riley, A. M.; Potter, B. V. L. Tetrahedron Lett. 1998, 39, 6769±6772.
8. Lee, H. W.; Kishi, Y. J. Org. Chem. 1985, 50, 4402±4404.
9. Bruzik, K. S.; Tsai, M. D. J. Am. Chem. Soc. 1992, 112, 6361±6374.
10. Careful spectral and chromatographic analyses revealed 6 and 7 are each single stereoisomers. However, it was not
possible to assign the con®guration as either exo or endo. Cf., Grove, S. J. A.; Gilbert, I. H.; Holmes, A. B.;
Painter, G. F.; Hill, M. L. Chem. Commun. 1997, 1633±1634.
11. The absolute con®guration of ketal 6 was established by perbenzylation (BnCl, NaH), ketal cleavage with
methanolic HCl, and comparison with the standards reported by Ozaki, S.; Kohno, M.; Nakahira, H.; Bunya,
M.; Watanabe, Y. Chem. Lett. 1988, 77±80.
12. Tegge, W.; Ballou, C. E. Proc. Natl. Acad. Sci. USA 1989, 86, 94±98.
13. Intermediate 9 was somewhat labile and variable amounts of phosphate migration products were noted. This
could be minimized by rapid puri®cation at neutral pH and storage at low temperatures.