LETTER
Intermolecular Hydroamination of Alkenes and 1,3-Dienes
3213
Han, X. Eur. J. Org. Chem. 2006, 4555. (f) Hazari, N.;
Mountford, P. Acc. Chem. Res. 2005, 38, 839. (g) Hultzsch,
K. C. Adv. Synth. Catal. 2005, 437, 367. (h) Alonso, F.;
Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
(i) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
(2) (a) Talluri, S. K.; Sudalai, A. Org. Lett. 2005, 7, 855.
(b) Anderson, L. L.; Arnold, J.; Bergman, R. G. J. Am.
Chem. Soc. 2005, 127, 14542. (c) Li, Z.; Zhang, J.;
Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett.
2006, 8, 4175. (d) Rosenfeld, D. C.; Shekhar, S.; Takemiya,
A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179.
(e) Motokura, K.; Nakagiri, N.; Mori, K.; Mizugaki, T.;
Ebitani, K.; Jitsukawa, K.; Kaneda, K. Org. Lett. 2006, 8,
4617. (f) Marcsekova, I.; Doye, S. Synthesis 2007, 145.
(g) Jazzar, R.; Dewhurst, R. D.; Bourg, J. B.; Donnadieu, B.;
Canac, Y.; Bertrand, G. Angew. Chem. Int. Ed. 2007, 46,
2899. (h) Yang, L.; Xu, L. W.; Xia, C. G. Tetrahedron Lett.
2008, 49, 2882. (i) Li, X.; Ye, S.; He, C.; Yu, Z.-X. Eur. J.
Org. Chem. 2008, 4296. (j) Yadav, J. S.; Reddy, B. V. S.;
Raju, A.; Ravindar, K.; Narender, R. Lett. Org. Chem. 2008,
5, 651. (k) Yang, L.; Xu, L.-W.; Xia, C.-G. Synthesis 2009,
1969.
(3) (a) Cheng, X.; Xia, Y.; Wei, H.; Xu, B.; Zhang, C.; Li, Y.;
Qian, G.; Zhang, X.; Li, K.; Li, W. Eur. J. Org. Chem. 2008,
1929. (b) Yang, L.; Xu, L.-W.; Gao, Y.-H.; Sun, W.; Xia,
C.-G. Synlett 2009, 1167; and references cited therein.
(4) (a) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006,
128, 1798. (b) Brouwer, C.; He, C. Angew. Chem. Int. Ed.
2006, 45, 1744. (c) Han, X.; Widenhoefer, R. A. Angew.
Chem. Int. Ed. 2006, 45, 1747. (d) Nishina, N.; Yamamoto,
N. Angew. Chem. Int. Ed. 2006, 45, 3314. (e) Liu, X.-Y.;
Li, C.-H.; Che, C.-M. Org. Lett. 2006, 8, 2707. (f) Kovács,
G.; Ujaque, G.; Lledós, A. J. Am. Chem. Soc. 2008, 130,
853. (g) Giner, X.; Nájera, C. Org. Lett. 2008, 10, 2919.
(h) Zhang, Z.; Lee, S. D.; Widenhoefer, R. A. J. Am. Chem.
Soc. 2009, 131, 5372.
Figure 1 Crystal structure of 2c9
1 mol% catalyst loading either in toluene at 85 °C or at
room temperature in CH2Cl2, respectively (Table 2, en-
tries 12 and 14). When HOTf (1 mol%) was employed at
50 °C in 1,2-dichloroethane as solvent, product 2e was ob-
tained in 63% yield2d (Table 2, entry 13). Penta-1,3-diene
(1f) was used as a mixture Z/E (1:1.8), affording product
2f as a Z/E mixture of 1:4.3 at 85 °C and 1:26 at room tem-
perature (Table 2, entries 15 and 16). Similar results have
been observed when HOTf (1 mol%) was used as catalyst
at room temperature, giving product 2f in 55% yield as a
1:26 Z/E mixture (Table 2, compare entries 16 and 17). In
the case of 3-methylpenta-1,3-diene (1g), which was pur-
chased as a 1:2.5 Z/E mixture, product 2g was obtained as
a 1/8 Z/E mixture when the hydroamination was carried
out in toluene at 85 °C in 78% yield (Table 2, entry 18),
whereas >99% of the E-diasteromer 2g was isolated at
room temperature in 51% yield (Table 2, entry 19). Using
HOTf as catalysts at room temperature, a similar 59%
yield of (E)-2g was isolated (Table 2, compare entries 19
and 20).
(5) Harrison, T. J.; Kozak, J. A.; Corbella-Pané, M.; Dake, G. R.
J. Org. Chem. 2006, 71, 4525.
(6) Gao, H.; Zhang, J. Adv. Synth. Catal. 2009, 351, 85.
(7) Carney, J. M.; Donoghue, P. J.; Wuest, W. M.; Wiest, O.;
Helquist, P. Org. Lett. 2008, 10, 3903.
In summary, it has been shown that AgOTf is a good cat-
alysts to perform the hydroamination of alkenes and
dienes with 4-toluenesulfonamide, affording similar re-
sults than when using HOTf. This methodology competes
with the gold(I) complexes–silver triflate combination
used for the intermolecular hydroamination of the same
substrates with sulfonamides with the only exception of
terminal alkenes.
(8) General Procedure for the Hydroamination of Alkenes
and Dienes
To a mixture of silver salt (see Tables 1 and 2) and
sulfonamide (171 mg, 1 mmol) in dry solvent (2 mL, see
Tables 1 and 2) was added the alkene or 1,3-diene (4 mmol)
with magnetic stirring in a sealed tube under argon
atmosphere in the dark. For neat experiments (see Table 2,
entries 6–8) no solvent was added. After the corresponding
reaction time under the conditions indicated in Tables 1
and 2 (for microwave heating the vessel was sealed with a
pressure lock, and the mixture was heated at 90 °C in a CEM
Discover MW reactor at 70 W, 0.69 bar with air stream
cooling during 30 min), to the reaction mixture cooled at r.t.
was added H2O (2 mL) and brine (2 drops). The organic
layer was separated, and the aqueous phase was extracted
with EtOAc (2 × 10 mL). All organic phases were mixed,
dried with MgSO4, and evaporated. Pure products were
obtained by recrystallization or by flash chromatography.
(9) Crystallographic data (excluding structure factors) have
been deposited with the Cambridge Crystallographic Data
supplementary publication no. CCDC 748465 [unit cell
parameters: a 12.2371 (16), b 17.627 (2), c 7.9272 (11),
b 105.117 (3), space group P21/c].
Acknowledgment
This work was financially supported by the Dirección General de
Investigación of the Ministerio de Educación y Ciencia (MEC) of
Spain (Grants, CTQ2007-62771/BQU and Consolider INGENIO
2010, CSD200700006), from the Generalitat Valenciana (Project
PROMETEO/2009/039), and the University of Alicante.
References and Notes
(1) For reviews, see: (a) Müller, T. E.; Hultzsch, K. C.; Yus, M.;
Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
(b) Wolfe, J. P. Synlett 2008, 2913. (c) Shen, H. C.
Tetrahedron 2008, 64, 3885. (d) Severin, R.; Doye, S.
Chem. Soc. Rev. 2007, 36, 1407. (e) Widenhoefer, R. A.;
Synlett 2009, No. 19, 3211–3213 © Thieme Stuttgart · New York