10.1002/chem.201703616
Chemistry - A European Journal
COMMUNICATION
O
addressed some long-standing challenges in this area such as
high entopic barriers, unwanted oligomerization, poor yields, and
limited substrate accessibility. By avoiding the well-known pitfalls
of cyclization reactions, our study opens doors for the evaluation
of medium sized cyclic peptides in library production for the
purposes of drug discovery.
R
O
O
*
N
N
1) TFA
2) DIPEA
O
N
*
NBoc
R
*
N
*
50ºC
Me
N
H
MeCN
O
O
6a-j
R= p-NO2-Bn
7a-j
R= p-NO2-Bn
O
O
O
R
N
R
R
N
N
N
N
N
O
O
O
Acknowledgements
Me
N
H
Me
N
H
Me
N
H
O
O
O
We would like to thank Dr. Darcy Burns and the NMR staff at the
University of Toronto for their assistance and Dr. Alan J. Lough
for acquiring and solving X-ray crystal structures. V.B.C thanks
the Ontario Graduate Scholarship for funding. R.M.S thanks
NSERC CREATE grant for funding. M. B.-B. thanks FRQNT for
funding. D.J.T. and Q.N.N. acknowledge computational support
from the NSF XSEDE program.
7a, 93%
O
7b, 92%
7c, 89%
Ph
Ph
Ph
Me
O
O
R
R
R
N
N
N
N
N
N
O
O
O
N
H
Me
N
H
Me
N
H
O
O
O
7d, 82%
7e, 78%
Ph
7f, 91%
Ph
N
O
O
O
Keywords: cyclol • medium-sized ring • cyclic peptide • ring
expansion • b-amino imide
R
PMB
N
N
N
N
N
O
O
O
MeOOC
N
H
Me
N
H
N
H
O
O
O
OBn
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
D. M. Wrinch, Nature 1936, 411–412.
D. M. Wrinch, Nature 1937, 139, 972–973.
D. Wrinch, Nature 1963, 199, 564–566.
L. Pauling, C. Niemann, J. Am. Chem. Soc. 1939, 61, 1860–1867.
G. Lucente, Tetrahedron Lett. 1981, 22, 3671–3674.
A. Chatterjee, S. Bose, C. Ghosh, Tetrahedron 1959, 7, 257–261.
G. Lucente, A. Romeo, J. Chem. Soc. D 1971, 0, 1605–1607.
G. Lucente, P. Frattesi, G. Zanotti, Tetrahedron Lett. 1973, 14,
4303–4306.
7g, 55%
7h, 73%
O
7i, 78%
PMB
N
N
O
PMB
N
H
N
O
PMB
[9]
G. Lucente, F. Pinnen, G. Zanotti, S. Cerrini, W. Fedeli, E. Gavuzzo,
Tetrahedron Lett. 1981, 22, 3671–3674.
7j, 77%
[10]
K. Fukunishi, S. Matsubara, K. kawakami, F. Mashio, Tetrahedron
Lett. 1973, 14, 4371–4374.
Scheme 4: Synthesis of cyclic tripeptides through the ring expansion of 2,5-
diketopiperazines.
[11]
[12]
[13]
B. G. Reid, G. C. Flynn, Biochemistry 1997, 36, 6786–6791.
R. Y. Tsien, Annu. Rev. Biochem. 1998, 67, 509–544.
F.-X. Wang, J.-Y. Du, H.-B. Wang, P.-L. Zhang, G.-B. Zhang, K.-Y.
Yu, X.-Z. Zhang, X.-T. An, Y.-X. Cao, C.-A. Fan, J. Am. Chem. Soc.
2017, 139, 4282–4285.
The active ester containing the para-methoxybenzyl (PMB)
protecting group (see Supporting Information) was used to
synthesize cyclic tripeptides 7i-j. These cyclic tripeptides contain
the polar amino acid side chains, serine and lysine, and were
obtained in comparable yields. X-ray crystal structures were
obtained for compounds 7a and 7h (Figure 2). In both molecules,
the newly formed amide bond displays a trans conformation,
alleviating allylic strain present in an all cis-amide linkage.
In summary, we have developed a robust methodology for
the synthesis of challenging medium-sized rings through the
collapse of cyclol intermediates derived from the intramolecular
cyclization of β-amino imides. The results of our study suggest
that cyclols can act as useful pivot points in the construction of
medium-sized rings, but only if the conversion to the open form
is exergonic by at least 6-12 kcal/mol (see Supporting
Information for in-depth analysis), as determined through
computational analysis. As observed, more readily reversible
systems would promote undesired decomposition pathways of
these fragile intermediates. Our findings also encourage
consideration of non-peptidic systems, where "cyclol
management" could facilitate rational design of new
transformations. This methodology was successfully applied to
the synthesis of challenging cyclic tripeptides and has
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
A. Frichert, P. G. Jones, T. Lindel, Angew. Chemie Int. Ed. 2016, 55,
2916–2919.
A. Hussain, S. K. Yousuf, D. Mukherjee, RSC Adv. 2014, 4, 43241–
43257.
Y. Kasai, N. Michihata, H. Nishimura, T. Hirokane, H. Yamada,
Angew. Chemie Int. Ed. 2012, 51, 8026–8029.
B. M. Trost, A. C. Burns, M. J. Bartlett, T. Tautz, A. H. Weiss, J. Am.
Chem. Soc. 2012, 134, 1474–1477.
X.-M. Zhang, Y.-Q. Tu, F.-M. Zhang, H. Shao, X. Meng, Angew.
Chemie Int. Ed. 2011, 50, 3916–3919.
N. A. McGrath, M. Brichacek, J. T. Njardarson, J. Chem. Educ. 2010,
87, 1348–1349.
L. Huang, L.-X. Dai, S.-L. You, J. Am. Chem. Soc. 2016, 138, 5793–
5796.
K. Ha, J.-C. M. Monbaliu, B. C. Williams, G. G. Pillai, C. E. Ocampo,
M. Zeller, C. V. Stevens, A. R. Katritzky, Org. Biomol. Chem. 2012,
10, 8055.
B. Wels, J. A. W. Kruijtzer, R. M. J. Liskamp, Org. Lett 2002, 4,
2173–2176.
J. P. A. Rutters, Y. Verdonk, R. de Vries, S. Ingemann, H. Hiemstra,
V. Levacher, J. H. van Maarseveen, Chem. Commun. 2012, 48,
8084–8086.
G. Illuminati, L. Mandolini, Acc. Chem. Res. 1981, 14, 95–102.
M. E. Maier, Angew. Chemie Int. Ed. 2000, 39, 2073–2077.
L. Li, Z.-L. Li, F.-L. Wang, Z. Guo, Y.-F. Cheng, N. Wang, X.-W.
Dong, C. Fang, J. Liu, C. Hou, et al., Nat. Commun. 2016, 7, 13852.
F. Kopp, C. F. Stratton, L. B. Akella, D. S. Tan, Nat. Chem. Biol.
2012, 8, 358–365.
L. G. Baud, M. A. Manning, H. L. Arkless, T. C. Stephens, W. P.
Unsworth, Chem. - A Eur. J. 2017, 23, 2225–2230.
C. Kitsiou, J. J. Hindes, P. I’Anson, P. Jackson, T. C. Wilson, E. K.
Daly, H. R. Felstead, P. Hearnshaw, W. P. Unsworth, Angew.
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
This article is protected by copyright. All rights reserved.