4564 J. Am. Chem. Soc., Vol. 122, No. 19, 2000
Kanomata and Nakata
apoenzyme provides a chiral environment for its biological
reduction to induce high enantioselectivities toward its sub-
strates. This asymmetric induction has attracted the attention
of organic and bioorganic chemists to explore the features of
such a stereospecific reduction by challenging its mimicry,4-10
or the related asymmetric reduction of activated ketones,8a,c,10b,11
imines,11b or enamines6e in organic media. However, the
conventional strategy to design an artificial NADH is the
syntheses of the 1,4-dihydronicotinamides or their analogues
having a chiral center at their C-4 positions5 and/or chiral
sidearms on their carbamoyl groups.6-10 Therefore, the former
suffers from loss of chirality at C-4 during the course of the
model reactions, and the latter generally requires significant
modification of the dihydronicotinamide unit in such a way to
introduce a fused ring system, additional chiral auxiliaries, a
chiral sulfoxide group, etc. To strictly mimic the stereoselective
transfer of the hydrogen atom in recyclable artificial systems,
we have designed the novel bridged NADH models 10a-c,
which incorporate the oligomethylene bridge feigning an
“enzyme wall” to regulate the stereoselective approach of
pyruvate analogues for accomplishment of their biomimetic
reduction with high enantioselectivity. Especially, the model
(S)-10c incorporating not only the ansa bridge but also a primary
carbamoyl group is worth being tested as a compact chemical
Scheme 1a
a E ) an ester group.
miniature of lactate dehydrogenase containing coenzyme NADH
to probe whether such a simple model compound efficiently
works in artificial systems. We now report the detailed results
of the synthesis of the bridged NADH models 10a-c, the first
homochiral ansa-type NADH models,12 and their highly enan-
tioselective reduction of pyruvate analogues as well as some
activated ketones with good selectivity to demonstrate that
stereoselective shielding of a dihydronicotinamide ring is the
absolute and the minimally sufficient factor for artificial NADH
systems with high enantioselectivity.
(4) Recent review articles: (a) Kanomata, N. J. Synth. Org. Chem., Jpn.
1999, 57, 512-522. (b) Murakami, Y.; Kikuchi, J.; Hisaeda, Y.; Hayashida,
O. Chem. ReV. 1996, 96, 721-758. (c) Dupas, G.; Levacher, V.; Bourgui-
gnon, J.; Que´guiner, G. Heterocycles 1994, 39, 405-429. (d) Burgess, V.
A.; Davies, S. G.; Skerlj, R. T. Tetrahedron: Asymmetry 1991, 2, 299-
328.
(5) (a) Ohno, A.; Ikeuchi, M.; Kimura, T.; Oka, S. J. Am. Chem. Soc.
1979, 101, 7036-7040. (b) Mikata, Y.; Hayashi, K.; Mizukami, K.;
Matsumoto, S.; Yano, S.; Yamazaki, N.; Ohno, A. Tetrahedron Lett. 2000,
41, 1035-1038. Ohno, A.; Kashiwagi, M.; Ishihara, Y. Tetrahedron 1986,
42, 961-973. (c) de Kok, P. M. T.; Bastiaansen, L. A. M.; van Lier, P. M.;
Vekemans, J. A. J. M.; Buck, H. M. J. Org. Chem. 1989, 54, 1313-1320.
(d) Meyers, A. I.; Oppenlaender, T. J. Am. Chem. Soc. 1986, 108, 1989-
1996. Meyers, A. I.; Brown, J. D. J. Am. Chem. Soc. 1987, 109, 3155-
3156.
(6) (a) Combret, Y.; Torche´, J. J.; Ple´, N.; Duflos, J.; Dupas, G.;
Bourguignon, J.; Que´guiner, G. Tetrahedron 1991, 47, 9369-9382. (b)
Combret, Y.; Torche´, J. J.; Binay, P.; Dupas, G.; Bourguignon, J.; Que´guiner,
G. Chem. Lett. 1991, 125-128. (c) Combret, Y.; Duflos, J.; Dupas, G.;
Bourguignon, J.; Que´guiner, G. Tetrahedron 1993, 49, 5237-5246. (d)
Be´dat, J.; Levacher, V.; Dupas, G.; Que´guiner, G.; Bourguignon, J. Chem.
Lett. 1995, 327-328. Be´dat, J.; Levacher, V.; Dupas, G.; Que´guiner, G.;
Bourguignon, J. Chem. Lett. 1996, 359-360. (e) Leroy, C.; Levacher, V.;
Dupas, G.; Que´guiner, G.; Bourguignon, J. Tetrahedron: Asymmetry 1997,
8, 3309-3318.
(7) Burgess, V. A.; Davies, S. G.; Skerlj, R. T.; Whittaker, M.
Tetrahedron: Asymmetry 1992, 3, 871-901. Burgess, V. A.; Davies, S.
G.; Skerlj, R. T. J. Chem. Soc., Chem. Commun. 1990, 1759-1762. Davies,
S. G.; Skerlj, R. T.; Whittaker, M. Tetrahedron: Asymmetry 1990, 1, 725-
728.
(8) (a) Seki, M.; Baba, N.; Oda, J.; Inouye, Y. J. Am. Chem. Soc. 1981,
103, 4613-4615. (b) Hoshide, F.; Ohi, S.; Baba, N.; Oda, J.; Inouye, Y.
Agric. Biol. Chem. 1982, 46, 2173-2175. (c) Seki, M.; Baba, N.; Oda, J.;
Inouye, Y. J. Org. Chem. 1983, 48, 1370-1373. (d) Skog, K.; Wennerstro¨m,
O. Tetrahedron Lett. 1992, 33, 1751-1754.
(9) de Vries, J. G.; Kellogg, R. M. J. Am. Chem. Soc. 1979, 101, 2759-
2761. Jouin, P.; Troostwijk, C. B.; Kellogg, R. M. J. Am. Chem. Soc. 1981,
103, 2091-2093. Talma, A. G.; Jouin, P.; de Vries, J. G.; Troostwijk, C.
B.; Werumeus Buning, G. H.; Waninge, J. K.; Visscher, J.; Kellogg, R. M.
J. Am. Chem. Soc. 1985, 107, 3981-3997.
(10) Chiral sulfoxide models: (a) Imanishi, T.; Hamano, Y.; Yoshikawa,
H.; Iwata, C. J. Chem. Soc., Chem. Commun. 1988, 473-475. (b) Obika,
S.; Nishiyama, T.; Tatematsu, S.; Miyashita, K.; Iwata, C.; Imanishi, T.
Tetrahedron 1997, 53, 593-602. (c) Obika, S.; Nishiyama, T.; Tatematsu,
S.; Miyashita, K.; Imanishi, T. Chem. Lett. 1996, 853-854. Obika, S.;
Nishiyama, T.; Tatematsu, S.; Miyashita, K.; Imanishi, T. Tetrahedron 1997,
53, 3073-3082. (d) Obika, S.; Nishiyama, T.; Tatematsu, S.; Nishimoto,
M.; Miyashita, K.; Imanishi, T. Heterocycles 1998, 49, 261-267.
(11) (a) Vasse, J. L.; Charpentier, P.; Levacher, V.; Dupas, G.; Que´guiner,
G.; Bourguignon, J. Synlett 1998, 1144-1146. (b) Versleijen, J. P.; Sanders-
Hovens, M. S.; Vanhommerig, S. A.; Vekemans, J. A.; Meijer, E. M.
Tetrahedron 1993, 49, 7793-7802.
Results
Synthesis of Bridged Nicotinate. Scheme 1 outlines our
synthetic strategy for bridged nicotinate, a crucial synthetic
intermediate for the NADH model compounds. We employed
the aza-Wittig reaction as the key step since it seems useful for
the syntheses of nicotinates13 and pyridinophane derivatives.12b,14
The retrosynthetic cleavage of the CdN double bond in the
pyridinophane skeleton reveals the dienal intermediate A as the
precursor, which is a valence isomer of the corresponding
cyclobutene intermediate B. The enamine-type [2+2] cycload-
dition disassembles B to the formyl-substituted (vinylimino)-
phosphorane and methyl propiolate.
The actual synthesis of the bridged nicotinate 5 is summarized
in Scheme 2. The Vilsmeier-Haack formylation15 of the readily
available cyclododecanone afforded cis-2-chloro-1-cyclododecene-
carbaldehyde (cis-1) and its isomer, trans-1, in 78% and 17%
yields, respectively. Compound cis-1 was treated with sodium
azide and a catalytic amount of lithium chloride to give trans-
2-azido-1-cyclododecenecarbaldehyde (trans-2) and the formyl-
substituted cyclododec[b]azirinecarbaldehyde (3) in a 39/61
(12) Pyridinophane coenzyme models were reported. For NAD+/NADH
models: (a) Kuroda, Y.; Seshimo, H.; Kondo, T.; Shiba, M.; Ogoshi, H.
Tetrahedron Lett. 1997, 38, 3939-3942. (b) Oikawa, T.; Kanomata, N.;
Tada, M. J. Org. Chem. 1993, 58, 2046-2051. (c) de Kok, P. M. T.; Buck,
H. M. J. Chem. Soc., Chem. Commun. 1985, 1009-1010. de Kok, P. M.
T.; Donkersloot, M. C. A.; van Lier, P. M.; Meulendijks, G. H. W. M.;
Bastiaansen, L. A. M.; van Hooff, H. J. G.; Kanters, J. A.; Buck, H. M.
Tetrahedron 1986, 42, 941-959. (d) Hasselbach, H.-J.; Krieger, C.; Decker,
M.; Staab, H. A. Liebigs Ann. Chem. 1986, 765-776. (e) Murakami, Y.;
Aoyama, Y.; Kikuchi, J.; Nishida, K. J. Am. Chem. Soc. 1982, 104, 5189-
5197. (f) See refs 8d and 9. For vitamin B6 models: (g) Koh, J. T.; Delaude,
L.; Breslow, R. J. Am. Chem. Soc. 1994, 116, 11234-11240. (h) Kuzuhara,
H.; Iwata, M.; Emoto, S. J. Am. Chem. Soc. 1977, 99, 4173-4175. (i)
Tachibana, Y.; Ando, M.; Kuzuhara, H. Bull. Chem. Soc. Jpn. 1983, 56,
3652-3656. Tachibana, Y.; Ando, M.; Kuzuhara, H. Chem. Lett. 1982,
1765-1768.
(13) Kanomata, N.; Nakata, T. Heterocycles 1998, 48, 2551-2558.
(14) (a) Kanomata, N.; Nitta, M. Tetrahedron Lett. 1988, 29, 5957-
5960. Kanomata, N.; Nitta, M. J. Chem. Soc., Perkin Trans. 1 1990, 1119-
1126. (c) Nitta, M.; Akie, T.; Iino, Y. J. Org. Chem. 1994, 59, 1309-
1314.
(15) (a) Marson, C. M.; Giles, P. R. Synthesis Using Vilsmeier Reagents;
CRC Press: Boca Raton, 1994. (b) Virgilio, J. A.; Heiweil, E. Org. Prep.
Proced. Int. 1982, 14, 9-20. (c) Ziegenbein, W.; Lang, W. Chem. Ber.
1960, 93, 2743-2749.