3148
H. Li et al. / Tetrahedron Letters 47 (2006) 3145–3148
Tomioka, K. J. Am. Chem. Soc. 1997, 119, 12974; (d)
Garg, S. K.; Kumar, R.; Chakraborti, A. K. Tetrahedron
Lett. 2005, 46, 1721.
5. Organocatalyzed Michael addition of thiols, see: (a)
Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981,
103, 417; (b) Colonna, S.; Re, A.; Wynberg, H. J. Chem.
Soc., Perkin Trans. 1 1981, 547; (c) Suzuki, K.; Ikegawa,
A.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1982, 55, 3277;
(d) McDaid, P.; Chen, Y.-G.; Deng, L. Angew. Chem., Int.
Ed. 2002, 41, 338; (e) Wabnitz, T. C.; Spencer, J. B. Org.
Lett. 2003, 5, 2141.
6. In contrast, the conversion of thioether to thiol (SH)
requires harsh reaction conditions, see: Greene, T. W.;
Wuts, P. G. M. In Protective Groups in Organic Synthesis;
John Wiley and Sons: New York, 1999; p 454.
7. Li, H.; Wang, J.; Zu, L.-S.; Wang, W. Tetrahedron Lett.
2006, 47, 2585–2589.
8. For a book discussing organocatalysis, see: Berkessel, A.;
Groger, H. Asymmetric Organocatalysis-From Biomimetic
Concepts to Applications in Asymmetric Synthesis; Wiley-
VCH Verlag GmbH & Co. KGaA: Weinheim, Germany,
2005.
Figure 2. X-ray crystal structure of 3g.
9. For recent reviews of organocatalysis, see: (a) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726; (b)
Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43,
5138; (c) Special issue on organocatalysis: Acc. Chem. Res.
2004, 37, 487; (d) Seayad, J.; List, B. Org. Biomol. Chem.
2005, 3, 719; (e) Tian, S.-K.; Chen, Y.-G.; Hang, J.-F.;
Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37,
621.
10. For studies of the H-bonding interactions of ureas/
thioureas with nitro, carbonyl, and imine groups, see: (a)
Etter, M. C. Acc. Chem. Res. 1990, 23, 120; (b) Etter, M.
C.; Urbanczyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Pan-
unto, T. W. J. Am. Chem. Soc. 1990, 112, 8415; (c) Etter,
M. C.; Panunto, T. W. J. Am. Chem. Soc. 1988, 110, 5896;
(d) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289; (e)
Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217; (f)
Wittkopp, A.; Schreiner, P. R. Chem. Eur. J. 2003, 9, 407.
11. For Takemoto’s amine thioureas catalysts, see: (a) Okino,
T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J.
Am. Chem. Soc. 2005, 127, 119, and references cited
therein; (b) Berkessel, A.; Cleemann, F.; Mukherjee, S.
Angew. Chem., Int. Ed. 2005, 44, 7466, and references cited
therein.
Acknowledgements
The financial support by the Department of Chemistry
and the Research Allocation Committee, University of
New Mexico, is gratefully acknowledged. The Bruker
X8 X-ray diffractometer was purchased via an NSF
CRIF:MU award to the University of New Mexico,
CHE-0443580. The expert X-ray crystallographic mea-
surements made by Dr. Eileen N. Duesler are greatly
appreciated.
Supplementary data
Supplementary data associated with this article can be
References and notes
12. For Jacobsen’s urea and thiourea catalysts, see: Taylor,
M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126,
10558, and references cited therein.
13. We have developed binaphthyl derived amine thiourea for
catalyzing: Morita–Baylis–Hillman reactions: (a) Wang,
J.; Li, H.; Duan, W.; Zu, L.; Wang, W. Org. Lett. 2005, 7,
4293; Michael addition reaction: (b) Wang, J.; Li, H.; Yu,
X.; Zu, L.; Wang, W. Org. Lett. 2005, 7, 4713.
1. (a) Metzner, P.; Thuillier, A. Sulfur Reagents in Organic
Synthesis; Academic Press: New York, 1994; (b) Nudel-
man, A. The Chemistry of Optically Active Sulfur Com-
pounds; Gordon and Breach: New York, 1984; (c)
Chatgilialoglu, C.; Asmus, K.-D. Sulfur-Centered Reactive
Intermediates in Chemistry and Biology; Springer: New
York, 1991.
´
2. Perlmutter, P. Conjugate Addition Reactions in Organic
Synthesis; Pergamon: Oxford, 1992.
14. Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Org. Lett.
2005, 7, 1967.
3. For recent reviews of asymmetric Michael addition
reactions, see: (a) Krause, N.; Hoffmann-Ro¨der, A.
Synthesis 2001, 171; (b) Berner, O. M.; Tedeschi, L.;
Enders, D. Eur. J. Org. Chem. 2002, 1877; (c) Christoffers,
J.; Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688; (d)
Sibi, M.; Manyem, S. Tetrahedron 2001, 56, 8033; (e)
Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062; (f)
Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719; (g)
Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289.
15. For cinchona alkaloids-based derivatives catalysts, see: (a)
Tian, S.-K.; Chen, Y.-G.; Hang, J.-F.; Tang, L.; McDaid,
P.; Deng, L. Acc. Chem. Res. 2004, 37, 621; (b) Li, H.;
Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004,
126, 9906; (c) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.;
Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed.
2005, 44, 105; (d) Tian, S.; Ran, H.; Deng, L. J. Am.
Chem. Soc. 2003, 125, 9900.
16. Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett
2005, 1491.
17. See Supplementary data for X-ray crystallographic infor-
mation; CCDC 283456 also contains Supplementary
crystallographic data. These data can be obtained free of
4. For examples of organometallics catalyzed Michael addi-
tion of thiols, see: (a) Zielinska-Błajet, M.; Kowalczyk, R.;
_
Skarzewski, J. Tetrahedron 2005, 61, 5235; (b) Emori, E.;
Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998,
120, 4043; (c) Nishimura, K.; Ono, M.; Nagaoka, Y.;