10.1002/chem.202003916
Chemistry - A European Journal
FULL PAPER
Psaltakis, J. J. Cortes, S. S. Siddiqi, J. J. Devery III, J. Org. Chem. 2020,
85, 820-832.
[12] C. Laurence, J. Graton, J.-F. Gal, J. Chem. Educ. 2011, 88, 1651-1657.
[13] H. Mayr, J. Ammer, M. Baidya, B. Maji, T. A. Nigst, A. R. Ofial, T. Singer,
J. Am. Chem. Soc. 2015, 137, 2580-2599.
[14] R. J. Mayer, A. R. Ofial, H. Mayr, C. Y. Legault, J. Am. Chem. Soc. 2020,
142, 5221-5233.
[15] A. Piñeiro, E. Muñoz, J. Sabín, M. Costas, M. Bastos, A. Velázquez-
Campoy, P. F. Garrido, P. Dumas, E. Ennifar, L. García-Río, J. Rial, D.
Pérez, P. Fraga, A. Rodríguez, C. Cotelo, Anal. Biochem. 2019, 577,
117−134
clarified whether such relationships exist also for further classes
of Lewis bases.
Furthermore, the overall efficacy of a borane-catalyzed
reaction[1,35] will significantly depend on the capability of the
borane to enhance the reactivity of the electrophile. A systematic
study on the electrophilicity[36] of boron-activated substrates is
currently ongoing in our lab.
[16] a) P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305-1323; b) P.
Thordarson, In Supramolecular Chemistry: From Molecules to
Nanomaterials (Eds.: J. W. Steed, P. A. Gale), Wiley: Chichester, UK,
2012, Vol. 2, pp 239-274.
Acknowledgements
[17] We considered the small difference in temperature between the ITC
(20 °C) and NMR measurements (22 °C) to be negligible for the
subsequent analysis.
We thank Amalina Buda for experimental assistance at the
beginning of the project, Prof. Herbert Mayr (LMU) for helpful
discussions and the Department Chemie for financial support.
R.J.M. is grateful to the Fonds der Chemischen Industrie for a
Kekulé fellowship.
[18] X-ray structures of the respective Lewis adducts show that the Lewis
bases 2, 3, 5, and 7–10 do not significantly interact with the aryl rings of
triarylboranes. Attractive aryl-aryl interactions have been observed,
however, in the Lewis adduct 1i/ethyl benzoate. For selected examples
of x-ray structures for Lewis adducts of 1i with a) benzaldehyde (7b),
acetophenone, and ethyl benzoate: refs [7a,b]; b) pyridines: ref [9b]; c)
nitriles and PPh3 (4b): H. Jacobsen, H. Berke, S. Döring, G. Kehr, G.
Erker, R. Fröhlich, O. Meyer, Organometallics 1999, 18, 1724-1735; d)
Et3PO (10): M. A. Beckett, D. S. Brassington, S. J. Coles, M. B.
Hursthouse, Inorg. Chem. Commun. 2000, 3, 530-533.
Keywords: Lewis acids • boranes • linear free energy
relationship • catalysis • thermodynamics
[19] J. J. Gajewski, P. Ngernmeesri, Org. Lett. 2000, 2, 2813-2815;
[20] a) P. Verma, D. G. Truhlar, Trends Chem. 2020, 2, 302-318; b) H. S. Yu,
X. He, S. L. Li, D. G. Truhlar, Chem. Sci. 2016, 7, 5032-5051. C) For full
details of the computational methods and references, see the Supporting
Information.
[21] H. Böhrer, N. Trapp, D. Himmel, M. Schleep, I. Krossing, Dalton Trans.
2015, 44, 7489-7499.
[22] L. Li, T. J. Marks, Organometallics 1998, 17, 3996-4003.
[23] a) P. A. Chase, W. E. Piers, B. O. Patrick, J. Am. Chem. Soc. 2000, 122,
[1]
a) K. Ishihara, H. Yamamoto, Eur. J. Org. Chem. 1999, 527-538; b) K.
Ishihara, in Lewis Acids in Organic Synthesis (Ed.: H. Yamamoto), Wiley-
VCH, New York, 2000, pp. 89-133; c) K. Ishihara, in Lewis Acids in
Organic Synthesis (Ed.: H. Yamamoto), Wiley-VCH, New York, 2000, pp.
135-190; d) V. Rauniyar, D. G. Hall, in Acid Catalysis in Modern Organic
Synthesis (Eds.: H. Yamamoto, K. Ishihara), Wiley-VCH, Weinheim,
2008, pp. 187-239; e) M. Hatano, K. Ishihara, in Boron Reagents in
Synthesis (ACS Symposium Series, Vol. 1236) (Ed.: A. Coca), American
Chemical Society, Washington, DC, 2016, pp. 27-66; f) J. R. Lawson, R.
L. Melen, Inorg. Chem. 2017, 56, 8627-8643; g) J. L. Carden, A.
Dasgupta, R. L. Melen, Chem. Soc. Rev. 2020, 49, 1706-1725. h) A.
Dasgupta, R. Babaahmadi, B. Slater, B. F. Yates, A. Ariafard, R. L. Melen,
Chem 2020, 6, 2364-2381.
a) P. A. Chase, W. A. Piers, B. O. Patrick, J. Am. Chem. Soc. 2000, 122,
12911-12912; b) A. E. Ashley, T. A. Herrington, G. G. Wildgoose, H.
Zaher, A. L. Thompson, N. H. Rees, T. Krämer, D. O’Hare, J. Am. Chem.
Soc. 2011, 133, 14727-14740; c) A. Y. Houghton, V. A. Karttunen, W. E.
Piers, H. M. Tuononen, Chem. Commun. 2014, 50, 1295-1298; d) L. A.
Korte, J. Schwabedissen, M. Soffner, S. Blomeyer, C. G. Reuter, Y. V.
Vishnevskiy, B. Neumann, H.-G. Stammler, N. W. Mitzel, Angew. Chem.
Int. Ed. 2017, 56, 8578-8582; e) A. B. Saida, A. Chardon, A. Osi, N.
Tumanov, J. Wouters, A. I. Adjieufack, B. Champagne, G. Berionni,
Angew. Chem. Int. Ed. 2019, 58, 16889-16893; f) A. Chardon, A. Osi, D.
Mahaut, T. H. Doan, N. Tumanov, J. Wouters, L. Fusaro, B. Champagne,
G. Berionni, Angew. Chem. Int. Ed. 2020, 59, 12402-12406.
Concepts of semi-quantitative Lewis acidity rankings were used for a
rational reaction design, for example, in: a) J. A. Nicasio, S. Steinberg, B.
Inés, M. Alcarazo, Chem. Eur. J. 2013, 19, 11016-11020; b) S. Keess, A.
Simonneau, M. Oestreich, Organometallics 2015, 34, 790-799; c) J. B.
Geri, J. P. Shanahan, N. K. Szymczak, J. Am. Chem. Soc. 2017, 139,
5952-5956;
12911-12912; b) Analogously, the Lewis acidities for B(o-HC6F4)3 (LAB
=
6.7) and B(p-HC6F4)3 (LAB = 6.9) can be derived from equilibrium
constants reported in ref [7c].
[24] a) A. R. Jupp, T. C. Johnstone, D. W. Stephan, Dalton Trans. 2018, 47,
7029-7034; b) A. R. Jupp, T. C. Johnstone, D. W. Stephan, Inorg. Chem.
2018, 57, 14764-14771.
[2]
[25] a) C. Hansch, A. Leo, D. Hoekman, Exploring QSAR – Hydrophobic,
Electronic, and Steric Constants (ACS Professional Reference Book);
American Chemical Society, Washington, DC, 1995; b) G. W. Jameson,
J. M. Lawlor, J. Chem. Soc. B 1970, 53-57; c) A. Fischer, W. J. Galloway,
J. Vaughan, J. Chem. Soc. 1964, 3591-3596; d) M. Taagepera, W. G.
Henderson, R. T. C. Brownlee, J. L. Beauchamp, D. Holtz, R. W. Taft, J.
Am. Chem. Soc. 1972, 94, 1369-1370; e) R. L. Andon, J. D. Cox, E. F.
G. Herington, Trans. Faraday Soc. 1954, 50, 918-927.
[26] Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC
Press, Boca Raton, FL, 2007.
[27] a) S. Grimme, P. R. Schreiner, Angew. Chem. Int. Ed. 2011, 50, 12639-
12642; b) S. Rösel, C. Balestrieri, P. R. Schreiner, Chem. Sci. 2017, 8,
405-410.
[3]
[28] For equilibrium constants of reactions of tritylium ions with sterically
congested Ar3P: E. Follet, P. Mayer, D. S. Stephenson, A. R. Ofial, G.
Berionni, Chem. Eur. J. 2017, 23, 7422-7427.
[29] Attractive interactions via C-H…F bonds of triarylborane ortho-fluorine
atoms in Lewis adducts with aldehydes were discussed in ref [7b].
[30] a) A DMAP-binding constant of K = 3.0 × 104 M–1 (in CH2Cl2) was
determined for B(C6Cl5)3 (ref [30b]). Analogous to 1j, however, the
considerable steric constraints in B(C6Cl5)3 impede its inclusion in the
LAB scale. b) H. Zhao, J. H. Reibenspies, F. P. Gabbaï, Dalton Trans.
2013, 42, 608-610.
[4]
[5]
L. Greb, Chem. Eur. J. 2018, 24, 17881-17896.
C. Laurence, J.-F. Gal, Lewis Basicity and Affinity Scales: Data and
Measurement; Wiley: Chichester, UK, 2010.
[6]
[7]
For the definition of Lewis acidity and basicity see the IUPAC
recommendations: P. Muller, Pure Appl. Chem. 1994, 66, 1077-1184.
a) D. J. Parks, W. E. Piers, J. Am. Chem. Soc. 1996, 118, 9440-9441; b)
D. J. Parks, W. E. Piers, M. Parvez, R. Atencio, M. J. Zaworotko,
Organometallics 1998, 17, 1369-1377; c) M. M. Morgan, A. J. V. Marwitz,
W. E. Piers, M. Parvez, Organometallics 2013, 32, 317-322.
L. Rocchigiani, G. Ciancaleoni, C. Zuccaccia, A. Macchioni, J. Am. Chem.
Soc. 2014, 136, 112-115.
[31] L. Süsse, M. Vogler, M. Mewald, B. Kemper, E. Irran, M. Oestreich,
Angew. Chem. Int. Ed. 2018, 57, 11441-11444.
[32] W. Li, T. Werner, Org. Lett. 2017, 19, 2568-2571.
[33] D. Mukherjee, S. Shirase, K. Mashima, J. Okuda, Angew. Chem. Int. Ed.
2016, 55, 13326-13329.
[34] a) D. J. Morrison, W. E. Piers, Org. Lett. 2003, 5, 2857-2860; b) V.
Fasano, M. J. Ingleson, Chem. Eur. J. 2016, 23, 2217-2224; c) K. A.
Andrea, F. M. Kerton, ACS Catal. 2019, 9, 1799-1809; d) M. S. Eastwood,
C. J. Douglas, Org. Lett. 2019, 21, 6149-6154; e) A. Brar, D. K. Unruh,
N. Ling, C. Krempner, Org. Lett. 2019, 21, 6305-6309.
[35] B. Rao, R. Kinjo, Chem. Asian J. 2018, 13, 1279-1292.
[36] a) H. Mayr, A. R. Ofial, SAR QSAR Environm. Res. 2015, 26, 619-646;
b) H. Mayr, A. R. Ofial, Acc. Chem. Res. 2016, 49, 952-965; c) H. Mayr,
A. R. Ofial, Pure Appl. Chem. 2017, 89, 729-744.
[8]
[9]
a) S. J. Geier, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 3476-3477;
b) S. J. Geier, A. L. Gille, T. M. Gilbert, D. W. Stephan, Inorg. Chem.
2009, 48, 10466-10474.
[10] a) I. B. Sivaev, V. I. Bregadze, Coord. Chem. Rev. 2014, 270-271, 75-
88; b) S. Döring, G. Erker, R. Fröhlich, O. Meyer, K. Bergander,
Organometallics 1998, 17, 2183-2187; c) A. G. Massey, A. J. Park, J.
Organomet. Chem. 1966, 5, 218-225; d) S. C. Cohen, A. G. Massey, Adv.
Fluorine Chem. 1970, 6, 83-285.
[11] a) R. F. Childs, D. L. Mulholland, A. Nixon, Can. J. Chem. 1982, 60, 801-
808; b) M. A. Beckett, G. C. Strickland, J. R. Holland, K. S. A. Varma,
Polymer 1996, 4629-4631; c) G. Hilt, F. Pünner, J. Möbus, V. Naseri, M.
A. Bohn, Eur. J. Org. Chem. 2011, 5962-5966; d) J. R. Gaffen, J. N.
Bentley, L. C. Torres, C. Chu, T. Baumgartner, C. B. Caputo, Chem 2019,
5, 1567-1583; e) S. Künzler, S. Rathjen, A. Merk, M. Schmidtmann, T.
Müller, Chem. Eur. J. 2019, 25, 15123-15130; f) C. S. Hanson, M. C.
9
This article is protected by copyright. All rights reserved.