Hydride Abstraction by Cyclopentadienone-Ligated Carbonylmetal Complexes
quisition time, and 45 s pulse delay. A control spectrum of
[H6]benzaldehyde showed Ͻ 5% error in 1H integrations under
these conditions (Tables 4, 5, and 6).
Petroleum Research Fund (grant 47987-G1). We thank Robert Bau
and Tim Stewart for assistance with X-ray crystallography. T. J. W.
thanks colleagues for insightful discussions: Kyung Jung, Surya
Prakash, Mark Thompson, George Olah, Charles McKenna, Rich-
ard Brutchey, Tom Flood, and Nicos Petasis.
Preparative Details: Sample procedure of the oxidation of 1-pheny-
lethanol: 1 (21.7 mg, 20.0 µmol), acetone (3 mL), and 6a (121 µL,
1.00 mmol) were combined in a test tube with a stir bar. The re-
sulting solution was subjected to reflux for 2 d, and the reaction
mixture was cooled to room temperature, concentrated, and puri-
fied by flash column chromatography to afford 7a (118 mg, 97%)
as a colorless liquid.
[1] Regarding hydride transfer, see: a) N. C. Deno, H. J. Peterson,
G. S. Saines, Chem. Rev. 1960, 60, 7–14. Some examples in-
clude: b) Z. Li, D. S. Bohle, C.-J. Li, Proc. Natl. Acad. Sci.
USA 2006, 103, 8928–8933; c) S. J. Pastine, K. M. McQuaid, D.
Sames, J. Am. Chem. Soc. 2005, 127, 12180–12181; d) W. H. N.
Nijhuis, W. Verboom, A. A. El-Fadl, S. Harkema, D. N. Rein-
houdt, J. Org. Chem. 1989, 54, 199–209. via SET:; e) S. Fuku-
zumi, K. Ohkubo, T. Okamoto, J. Am. Chem. Soc. 2002, 124,
14147–14155; f) for a review, see: J.-E. Bäckvall, J. Organomet.
Chem. 2002, 652, 105–111.
[2] Y. Blum, D. Czarkie, Y. Rahamim, Y. Shvo, Organometallics
1985, 4, 1459–1461.
[3] a) M. L. S. Almeida, M. Beller, G.-Z. Wang, J.-E. Bäckvall,
Chem. Eur. J. 1996, 2, 1533–1536; b) J. B. Johnson, J.-E.
Bäckvall, J. Org. Chem. 2003, 68, 7681–7684.
[4] a) C. P. Casey, S. E. Beetner, J. B. Johnson, J. Am. Chem. Soc.
2008, 130, 2285–2295; b) C. P. Casey, S. W. Singer, D. R. Pow-
ell, R. K. Hayashi, M. Kavana, J. Am. Chem. Soc. 2001, 123,
1090–1100.
[5] For a computational study of 1-catalyzed hydrogenation of
ketones, see: A. Comas-Vives, G. Ujaque, A. Lledós, Organo-
metallics 2007, 26, 4135–4144.
[6] Further information on the synthetic applications of 1 and its
related system [(PPh3)2RuCl2]/K2CO3 has been reported:
M. L. S. Almeida, M. Beller, G.-Z. Wang, J.-E. Bäckvall, Chem.
Eur. J. 1996, 2, 1533–1536.
Synthesis of 11: By cannulation, a 25 mL solution of 10[22] (0.42 g,
2.00 mmol) in NEt3 was added to a 25 mL solution of 4-iodotol-
uene (1.09 g, 5.01 mmol), [PdCl2(PPh3)2] (0.03 g, 0.04 mmol), and
[CuI] (0.02 g, 0.10 mmol) under nitrogen. The mixture was stirred
at room temperature for 18 h at which time all volatiles were re-
moved under reduced pressure. The resulting oil was dissolved in
CH2Cl2 and washed once each with ca. 20 mL of Na2S2O3 solution
and brine, respectively. The organic layer was then dried with
MgSO4. Upon removal of all volatiles under reduced pressure, a
golden-colored oil resulted. The oil was dissolved in 20 mL of hex-
anes and placed in a –15 °C freezer overnight. The product was
isolated and recrystallized from hexanes resulting in 0.37 g (57%
yield) of off-white crystals of 10a; m.p. 68–71 °C. 1H NMR ([D]-
3
chloroform, 400 MHz): δ = 7.28 (d, JH,H = 7.5 Hz, 4 H, Ar-H),
3
7.09 (d, JH,H = 7.5 Hz, 4 H, Ar-H), 3.80 (s, 6H. OCH3), 3.26 (s, 4
H, CH2), 2.34 (s, 6 H, CH3) ppm. 13C NMR ([D]chloroform,
100 MHz): δ = 169.5 (2 C), 138.2 (2 C), 131.6 (4 C), 129.0 (4 C),
120.0 (2 C), 83.9 (2 C), 83.2 (2 C), 57.3, 53.1 (2 C), 23.9 (2 C), 21.5
(2 C) ppm. FTIR (NaCl): ν = 3291 (w), 3030 (w), 2954 (m), 2923
˜
(w), 1743 (s), 1734 (s), 1511 (s), 1436 (m), 1327 (m), 1294 (m), 1263
(m), 1212 (br., s), 1107 (w), 1076 (m), 1058 (m), 1022 (w), 991 (w),
943 (w), 853 (w), 817 (s), 668 (w) cm–1. C25H24O4 (388.46): calcd.
C 77.30, H 6.23; found C 76.73, H 6.11. The reaction was run
air-free in a method similar to that described by Pearson et al.[18]
Specifically, 10a (0.11 g, 0.27 mmol) was dissolved in 600 mL of
toluene (distilled from calcium hydride) in a 50 mL Strauss flask
equipped with a stir bar. Next, [Fe(CO)5] (0.22 mL, 1.63 mmol),
previously degassed with N2 was syringed into the flask. The flask
was then flushed three times with CO gas and tightly sealed and
placed into a 110 °C oil bath for 4 d. All volitales were then re-
moved under reduced pressure, resulting in the crude product as a
powdery solid. The solid was treated with warm hexanes and fil-
tered, resulting in 80 mg (55% yield) of pure 11 as a mustard-yellow
solid; decomposition 201–204 °C. 1H NMR ([D]chloroform,
[7] L. P. Hammett, J. Am. Chem. Soc. 1937, 59, 96–103.
[8] K. Kaneda, K. Mori, T. Hara, T. Mizugaki, K. Ebitani, Catal.
Surv. Asia 2004, 8, 231–239.
[9] K. Vijayasri, J. Rajaram, J. C. Kuriacose, J. Mol. Catal. 1987,
39, 203–217.
[10] H. B. Özgün, N. Degirmenbas¸i, J. Chem. Res. (S) 1997, 32–
˘
33.
[11] P. A. Wender, T. J. Paxton, T. J. Williams, J. Am. Chem. Soc.
2006, 128, 14814–14815.
[12] J. T. Groves, Y.-Z. Han, in Cytochrome P450: Structure, Mecha-
nism, and Biochemistry, 2nd ed. (Ed.: P. R. Ortiz de Montel-
lano), Plenum Press, New York, 1995.
[13] a) M. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr, Chem. Rev.
2004, 104, 939–986; b) M. M. Abu-Omar, A. Loaiza, N.
Hontzeas, Chem. Rev. 2005, 105, 2227–2252. Regarding the
first mechanistic evidence implicating the role of a non-heme
FeV=O species in alkane hydroxylation, see: c) K. Chen, L.
Que Jr, J. Am. Chem. Soc. 2001, 123, 6327 –6337.
[14] a) A. Company, L. Gómez, X. Fontrodona, X. Ribas, M. Co-
stas, Chem. Eur. J. 2008, 14, 5727–5731; b) P. C. A. Bruijnincx,
I. L. C. Buurmans, S. Gosiewska, M. A. H. Moelands, M.
Lutz, A. L. Spek, G. van Koten, R. J. M. Klein Gebbink,
Chem. Eur. J. 2008, 14, 1228–1237; c) M. S. Chen, M. C. White,
Science 2007, 318, 783–787; d) G. J. P. Britovsek, J. England,
S. K. Spitzmesser, A. J. P. White, D. J. Williams, Dalton Trans.
2005, 945–955.
[15] S. Enthaler, G. Erre, M. K. Tse, K. Junge, M. Beller, Tetrahe-
dron Lett. 2006, 47, 8095–8099.
[16] C. Bianchini, E. Farnetti, M. Graziani, M. Peruzzini, A. Polo,
Organometallics 1993, 12, 3753–3761.
[17] Regarding a cyclopentadienone-ligated iron(II) catalyst for
ketone hydrogenation, see: a) C. P. Casey, H. Guan, J. Am.
Chem. Soc. 2007, 129, 5816–5817; b) H.-J. Knölker, E. Baum,
H. Goesmann, R. Klauss, Angew. Chem. Int. Ed. 1999, 38,
2064.
[18] Prepared according to a known procedure: A. J. Pearson, R. J.
Shively, R. A. Dubbert, Organometallics 1992, 11, 4096–4104.
3
3
400 MHz): δ = 7.94 (d, JH,H = 7.9 Hz, 4 H, Ar-H), 7.23 (d, JH,H
2
= 7.5 Hz, 4 H, Ar-H), 4.22 (d, JH,H = 16.6 Hz, 2 H, CH2), 3.52
(d, JH,H = 16.6 Hz, 2 H, CH2), 3.92 (s, 3 H, OCH3), 3.89 (s, 3 H,
2
OCH ), 2.38 (apparent s, 6 H, CH ) ppm. FTIR (NaCl): ν = 3437
˜
3
3
(br., s), 2067 (s), 2029 (m), 1987 (s), 1739 (m), 1653 (m), 1645 (m),
1623 (s), 1309 (w), 1260 (w), 1206 (w), 1189 (w), 1166 (m), 1134
(w), 1050 (w), 872 (w), 822 (m), 752 (w), 732 (w), 711 (w), 615 (m),
588 (w), 568 (w) cm–1. C29H24FeO8 (556.34): calcd. C 62.61, H,
4.35; found C 62.76, H 4.35.
Supporting Information (see footnote on the first page of this arti-
cle): Complete general procedures, details of kinetics analysis (in-
cluding graphical spectra), preparative details and graphical spectra
for new compounds, and line-listed X-ray crystallographic data for
11.
Acknowledgments
This research was supported by the University of Southern Cali-
fornia, the Loker Hydrocarbon Research Institute, and the ACS
Eur. J. Inorg. Chem. 2009, 295–302
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
301