Communications
[14] J. P. Birk, J. Halpern, A. L. Pickard, J. Am. Chem. Soc. 1968, 90,
4491.
[15] G. Wilke, H. Schott, P. Heimbach, Angew. Chem. 1967, 79, 62;
Angew. Chem. Int. Ed. Engl. 1967, 6, 92.
[16] S. Otsuka, T. Yoshida, Y. Tatsuno, J. Am. Chem. Soc. 1971, 93,
6462.
[17] J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles
and Applications of Transition Metal Chemistry, University
Science, Mill Valley, 1987.
[18] R. H. Crabtree, Organometallic Chemistry of the Transition
Metals, Wiley, New York, 2001.
[19] Burdick & Jackson “Anhydrous” brand solvents were used as
received.
[20] Yields: trans-[IrCl(CO)O2(PPh3)2] 96 ꢀ 7%, [IrO2(dppe)2]Cl
97 ꢀ 5%, [PtO2(PPh3)2] 107 ꢀ 7%, [PdO2(PPh3)4] 91 ꢀ 9%, and
[NiO2(CNtBu)2] 103 ꢀ 10%. [NiO2(PPh3)2] decomposes afford-
ing PPh3 44 ꢀ 10% and PPh3(O) 48 ꢀ 9%.
Figure 3. Model for the contribution of l to the reaction barrier
(designated ꢀ).
[21] P. B. Chock, J. Halpern, J. Am. Chem. Soc. 1966, 88, 3511.
[22] No O2 was released upon sparging solutions with He at 2 Torr for
up to 2 h.
[23] C. A. Tolman, W. C. Seidel, D. H. Gerlach, J. Am. Chem. Soc.
1972, 94, 2669.
mechanism, albeit with measurable differences in the tran-
sition-state structure. The correlation of the product-like
character of the transition state with the barrier height can be
explained in terms of Marcus theory, where an increasingly
favorable DG8 value decreases the contribution of isotope-
dependent nuclear reorganization to DGꢀ. This property
appears to differentiate reactions involving inner-sphere ET
to O2 from reactions proceeding by outer-sphere ET, in which
18O KIEs appear to be relatively insensitive to the value of
DG8.[30] The highly variable 18O KIEs determined in this work
for a single class of metal-mediated oxidation reactions
underscores the need for benchmarks and relevant models
to interpret such measurements upon O2-activation reactions
of metalloenzymes.
[24] A. Sen, J. Halpern, J. Am. Chem. Soc. 1977, 99, 8337.
[25] J. Bigeleisen, M. G. Mayer, J. Chem. Phys. 1947, 15, 261.
[26] G. Tian, J. P. Klinman, J. Am. Chem. Soc. 1993, 115, 8891.
[27] R. W. Horn, E. Weissberger, J. P. Collman, Inorg. Chem. 1970, 9,
2367.
[28] A. Nakamura, Y. Tatsuno, M. Yamamoto, S. Otsuka, J. Am.
Chem. Soc. 1971, 93, 6052.
[29] P. J. Hayward, D. M. Blake, G. Wilkinson, C. J. Nyman, J. Am.
Chem. Soc. 1970, 92, 5873.
[30] J. P. Roth, R. Wincek, G. Nodet, D. E. Edmondson, W. S.
McIntire, J. P. Klinman, J. Am. Chem. Soc. 2004, 126, 15120.
[31] E8’(IrI/IrII) = 1.32 V vs the normal hydrogen electrode (NHE):
K. Y. Jun, K. M. Ok, C. S. Chin, W. Shin, Bull. Korean Chem.
Soc. 1998, 19, 23.
0
[32] E8’(O2 /O2ꢁ) = ꢁ0.62 vs NHE: D. T. Sawyer, A. Sobkowiak,
J. L. J. Roberts, Electrochemistry for Chemists, Wiley, New York,
1995.
Received: June 17, 2005
Published online: October 13, 2005
Keywords: electron transfer · enzymes · isotope effects ·
.
O–O activation · transition states
[1] R. D. Guy, M. L. Fogel, J. A. Berry, Plant Physiol. 1993, 101, 37.
[2] B. Luz, E. Barkan, M. L. Bender, M. H. Thiemens, K. A.
Boering, Nature 1999, 400, 547.
[3] Y. Q. Gao, R. A. Marcus, Science 2001, 293, 259.
[4] J. P. Roth, J. P. Klinman in Isotope Effects in Chemistry and
Biology (Eds.: A. Kohen, H. Limbach), CRC, Boca Raton, 2005.
[5] W. P. Huskey in Enzyme Mechanism from Isotope Effects (Ed.:
P. F. Cook), CRC, Boca Raton, 1991.
[6] L. Melander, W. H. J. Saunders, Reaction Rates of Isotopic
Molecules, Wiley, New York, 1980.
[7] J. Bigeleisen, M. Wolfsberg, Adv. Chem. Phys. 1958, 1, 15.
[8] S. A. Mills, Y. Goto, Q. Su, J. Plastino, J. P. Klinman, Biochem-
istry 2002, 41, 10577.
[9] S. S. Stahl, W. A. Francisco, M. Merkx, J. P. Klinman, S. J.
Lippard, J. Biol. Chem. 2001, 276, 4549.
[10] W. A. Francisco, G. Tian, P. F. Fitzpatrick, J. P. Klinman, J. Am.
Chem. Soc. 1998, 120, 4057.
[11] G. Tian, J. A. Berry, J. P. Klinman, Biochemistry 1994, 33, 226.
[12] L. Vaska, L. S. Chen, C. V. Senoff, Science 1971, 174, 587.
[13] J. A. McGinnety, J. A. Ibers, Chem. Commun. 1968, 235.
7276
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 7273 –7276