ORGANIC
LETTERS
2002
Vol. 4, No. 20
3395-3397
Air-Stable, Storable, and Highly
Selective Chiral Lewis Acid Catalyst
Masaharu Ueno, Haruro Ishitani, and Shu¯ Kobayashi*
Graduate School of Pharmaceutical Sciences, The UniVersity of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Received July 1, 2002
ABSTRACT
An air-stable, storable, and highly selective chiral Lewis acid catalyst for asymmetric Mannich-type reactions has been developed. The catalyst
can be stored for more than three months in air at room temperature without loss of activity. Moreover, it has also been demonstrated that
the catalyst can be recovered and reused.
Asymmetric synthesis with chiral catalysts has attracted much
attention because large quantities of chiral molecules can
be prepared from a small amount of a chiral source.1 While
several excellent chiral catalysts have been developed in
oxidation and reduction, carbon-carbon bond-forming reac-
tions, and other transformations, they are often unstable in
air and/or in the presence of water. This is especially the
case in chiral Lewis acid catalysis because most Lewis acids
are air- and moisture-sensitive.2 Therefore, many catalysts
are prepared in situ in an appropriate solvent just before use,
and they cannot be preserved for extended periods. In this
paper, we describe an air-stable, storable, and highly selective
chiral Lewis acid catalyst for asymmetric Mannich-type
reactions.3 The catalyst can be stored for more than three
months in air at room temperature without loss of activity.4
The catalyst was prepared from Zr(OtBu)4 (1 mmol), (R)-
6,6′-bis(pentafluoroethyl)-1,1′-bi-2-naphthol5 ((R)-6,6′-C2F5-
BINOL, 2.0 mmol), N-methylimidazole (NMI, 4.0 mmol),
and powdered MS 5A (6.0 g/mmol) in benzene at 80 °C for
2 h. After removal of the solvent under reduced pressure at
50 °C for 1 h, a chiral zirconium catalyst with powdered
molecular sieVes (ZrMS) was formed. ZrMS thus prepared
was first tested in a model Mannich-type reaction of imine
1a with ketene silyl acetal 2a. While ZrMS was not effective
in the absence of NMI, high yields and selectivities were
obtained after adding NMI. The best result was obtained
when 10 mol % of ZrMS was combined with 20 mol % of
1999, 121, 5450. (i) Martin, S. F.; Lopez, O. D. Tetrahedron Lett. 1999,
40, 8949. (j) Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J.,
III; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J. Am. Chem. Soc. 2002, 124,
67. (k) Yamada, K-i.; Harwood, S. J.; Gro¨ger, H.; Shibasaki, M. Angew.
Chem., Int. Ed. 1999, 38, 3504. (l) List, B.; Pojarliev, P.; Biller, W. T.;
Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827. (m) Co´rdova, A.; Notz,
W.; Zhong, G.; Betancort, J. M.; Barbas, C. F., III J. Am. Chem. Soc. 2002,
124, 1842. (n) Xue, S.; Yu, S.; Deng, Y.; Wulff, W. D. Angew. Chem., Int.
Ed. 2001, 40, 2271. (o) Nishiwaki, N.; Knudsen, K. R.; Gothelf, K. V.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2992. (p) Knudsen, K.
R.; Risgaard, T.; Nishiwaki, N.; Gothelf, K. V.; Jørgensen, K. A. J. Am.
Chem. Soc. 2001, 123, 5843. (q) Kobayashi, S.; Matsubara, R.; Kitagawa,
H. Org. Lett. 2002, 4, 143. (r) Kobayashi, S.; Hamada, T.; Manabe, K. J.
Am. Chem. Soc. 2002, 124, 5640.
(4) Shibasaki et al. reported a stable chiral La catalyst: Kim, Y. S.;
Matsunaga, S.; Das, J.; Sekine, A.; Ohshima, T.; Shibasaki, M. J. Am. Chem.
Soc. 2000, 122, 6506.
(5) (a) Yamashita, Y.; Ishitani, H.; Shimizu, H.; Kobayashi, S. J. Am.
Chem. Soc. 2002, 124, 3292. (b) Yamashita, Y.; Saito, S.; Ishitani, H.;
Kobatyashi, S. Org. Lett. 2002, 4, 1221. See also ref 3f.
(1) (a) ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N., Pfalts,
A., Yamamoto, Y., Eds.; Springer: Berlin, Germany, 1999; Vol. 1-3. (b)
Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed; Wiley-VCH: New
York, 2000.
(2) Lewis Acid in Organic Synthesis; Yamamoto, Y., Ed.; Wiley-VCH:
Weinheim, Germany, 2000; Vol. 1, p 2.
(3) Recent examples of catalytic enantioselective Mannich-type reac-
tions: (a) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997,
119, 7153. (b) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc.
1998, 120, 431. (c) Kobayashi, S.; Hasegawa, Y.; Ishitani, H. Chem. Lett.
1998, 1131. (d) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc.
2000, 122, 8180. (e) Kobayashi, S.; Ishitani, H.; Yamashita, Y.; Ueno, M.;
Shimizu, H. Tetrahedron 2001, 57, 861. (f) Kobayashi, S.; Kobayashi, J.;
Ishitani, H.; Ueno, M. Chem. Eur. J. Submitted for publication. (g) Fujieda,
H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K. J. Am. Chem. Soc. 1997,
119, 2060. (h) Fujii, A.; Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc.
10.1021/ol026452t CCC: $22.00 © 2002 American Chemical Society
Published on Web 08/31/2002