Fig. 2. SEM images of n-TSA before use (a) and after reuse six times (b).
4. Conclusion
In summary, an efficient and rapid route for the synthesis of 2,4,6-triarylpyridines under solvent-less conditions is reported.
Operational simplicity, short reaction time, simple work-up without column chromatographic purification, reusability of the catalyst,
tolerance of various functional groups, excellent yields of products and solvent free conditions are the advantages of this protocol.
Moreover, one new compound is reported.
Acknowledgment
We gratefully acknowledge the Faculty of Chemistry of Semnan University for supporting this work.
References
[1] R.W. Armstrong, A.P. Combs, P.A. Tempest, S.D. Brown, T.A. Keating, Multiple-component condensation strategies for combinatorial
library synthesis, Acc. Chem. Res. 29 (1996) 123-131.
[2] Y.A. Ibrahim, H. Behbehani, M.R. Ibrahim, Efficient atom economic approaches towards macrocyclic crownamides via ring closure
metathesis, Tetrahedron Lett. 43 (2002) 4207-4210.
[3] M. Sathishkumar, S. Nagarajan, P. Shanmugavelan, et al., One-pot regio/stereoselective synthesis of 2-iminothiazolidin-4-ones under
solvent/scavenger-free conditions, Beilstein J. Org. Chem. 9 (2013) 689-697.
[4] R. S. Varma, Solvent-free organic syntheses using supported reagents and microwave irradiation, Green Chem. 1 (1999) 43-55.
[5] H. Naeimi, Z.S. Nazifi, Sulfonated diatomite as heterogeneous acidic nanoporous catalyst for synthesis of 14-aryl-14-H-
dibenzo[a,j]xanthenes under green conditions, Appl. Catal. A, 477 (2014) 132-140.
[6] P. Sivaguru, A. Lalitha, Ceric ammonium nitrate supported HY-zeolite: an efficient catalyst for the synthesis of 1,8-dioxo-
octahydroxanthenes, Chin. Chem. Lett. 25 (2014) 321-323.
[7] P. Li, S. Regati, H.C. Huang, et al., A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the
synthesis of propargylamines under solvent-free conditions, Chin. Chem. Lett. 26 (2015) 6-10.
[8] S.R. Jetti, A. Bhatewara, T. Kadre, S. Jain, Silica-bonded N-propyl sulfamic acid as an efficient recyclable catalyst for the synthesis of 3,4-
dihydropyrimidin-2-(1H)-ones/thiones under heterogeneous conditions, Chin. Chem. Lett. 25 (2014) 469-473.
[9] S. Rahmani, A. Amoozadeh, E. Kolvari, Nano titania-supported sulfonic acid: an efficient and reusable catalyst for a range of organic
reactions under solvent free conditions, Catal. Commun. 56 (2014) 184-188.
[10] I.J. Enyedy, S. Sakamuri, W.A. Zaman, K.M. Johnson, S. Wang, Pharmacophore-based discovery of substituted pyridines as novel
dopamine transporter inhibitors, Bioorg. Med. Chem. Lett. 13 (2003) 513-517.
[11] B.Y. Kim, J.B. Ahn, H.W. Lee, et al., Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-
thiazolidinedione, Eur. J. Med. Chem. 39 (2004) 433-447.
[12] E.C. Constable, Metallodendrimers: metal ions as supramolecular glue, Chem. Commun. (1997) 1073-1080.
[13] E.C. Constable, E.L. Dunphy, C.E. Housecroft, et al., Structural development of free or coordinated 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine
ligands through N-alkylation: new strategies for metallamacrocycle formation, Chem. Eur. J. 12 (2006) 4600-4610.
[14] B.G.G. Lohmeijer, U.S. Schubert, Playing LEGO with macromolecules: design, synthesis, and self-organization with metal complexes, J.
Polym. Sci., Part A: Polym. Chem. 41 (2003) 1413-1427.
[15] F. Krohnke, The specific synthesis of pyridines and oligopyridines, Synthesis 1 (1976) 1-24.
[16] G.W.V. Cave, C.L. Raston, Efficient synthesis of pyridines via a sequential solventless Aldol condensation and Michael addition, J.
Chem. Soc., Perkin Trans. 1, (2001) 3258-3264.
[17] K.T. Potts, M.J. Cipullo, P. Ralli, G. Theodoridis, Synthesis of 2,6-disubstituted pyridines, polypyridinyls, and annulated pyridines, J.
Org. Chem. 47 (1982) 3027-3038.
[18] M. Wang, Z. Yang, Z. Song, Q. Wang, Three-component one-pot synthesis of 2,4,6-triarylpyridines without catalyst and solvent, J.
Heterocycl. Chem. 52 (2014) 907-910 .
[19] A.R. Moosavi-Zare, M.A. Zolfigol, S. Farahmand, et al., Synthesis of 2,4,6-triarylpyridines using zrocl2 under solvent-free conditions,
Synlett 25 (2014) 193-196.
[20] Z. Zarnegar, J. Safari, M. Borjian-borujeni, Ultrasound-mediated synthesis of 2,4,6-triaryl-pyridines using MgAl2O4 nanostructures,
Chem. Heterocycl. Compd. (2015) 1-9.
[21] M. Reza, M. Shafiee, R. Moloudi, M. Ghashang, ZnO nanopowder: an efficient catalyst for the preparation of 2,4,6-triaryl pyridines
under solvent-free condition, APCBEE Procedia 1 (2012) 221-225.
[22] J. Safari, S. Gandomi-Ravandi, M. Borujeni, Green and solvent-free procedure for microwave-assisted synthesis of 2,4,6-triarylpyridines
catalysed using MgAl2O4 nanocrystals, J. Chem. Sci. 125 (2013) 1063-1070.
Page 7 of 8
8