J. C. Aponte et al. / Bioorg. Med. Chem. 18 (2010) 2880–2886
2885
6.2. Synthesis of BTPs
G.B.H.), to the FINCYT-BID (Banco Interamericano para el Desarrol-
lo) Program in Peru (grant #PIBAB03-084 to M.S.), to the Infectious
Diseases Training Program in Peru # 5D43 TW006581 (R.H. G) and
to the NIH grant P01-044979 (to R.L.T.) for their financial support.
J.M.B and R.L.T. thank Adriana M. C. Canavaci at the CTEGD-Univer-
sity of Georgia for her technical assistance with the in vitro testing
of drugs for T. cruzi. The skillful technical assistance of Mrs. Baojie
Wan and Yuehong Wang, ITR, UIC College of Pharmacy, Chicago
(IL), is gratefully acknowledged.
Cyanoacetic acid ethyl ester (0.23 mol), diethyl amine
(1.0 equiv) and cyclohexanone (1.5 equiv) were dissolved in EtOH
(75 mL) and placed in an ice bath; after 5 min, elemental sulfur
(0.23 mol) was added and the mixture was sonicated at room
temperature for 30 min. After cooling inside a fridge for 1 h,
the pale yellow solid (A, 2-amino-4,5,6,7-tetrahydro-3-eth-
oxycarbonylbenzothiophene, 43.3 g, 84%) was filtered and washed
with a cold solution of 60% EtOH in H2O. After drying under vac-
uum overnight, A was suspended in formamide (400 mL) and re-
fluxed for 6 h. After cooling to room temperature, the dark
solution was placed inside a fridge overnight, and the dark brown
needles (B, 4-hydroxy-5,6-tetramethylenethieno[2,3-d]pyrimidine,
37.3 g, 95%) were filtered and washed with a cold solution of 40%
EtOH in H2O. After drying under vacuum overnight, B was sus-
pended in POCl3 (400 mL) and refluxed for 3 h. After cooling to
room temperature, the excess of POCl3 was removed under re-
duced pressure, and then 300 mL of CHCl3 were added and the
homogeneous solution was poured over iced deionized water
(500 mL). The resulting bilayer mixture was separated and the
aqueous layer was adjusted to pH 8 using NH4OH (concd) and then
extracted with CHCl3. The organic fractions were pooled and dried
over anhydrous MgSO4. The CHCl3 was removed under reduced
pressure and the remaining yellow solid was re-dissolved in hot
MeOH. Afterwards, the solution was allowed to cool to room tem-
perature and placed inside a fridge overnight. The precipitated
white crystals (C, 4-chloro-5,6,7,8-tetrahydro-[1]benzothieno[2,3-
d]pyrimidine, 29.1 g, 72%) were filtered, washed with a cold solu-
tion of 80% EtOH in H2O and dried overnight under vacuum. C
was suspended in MeOH (400 mL) and hydrazine hydrate 80%
(hydrazine 51%) in H2O (16 mL) and refluxed for 2 h; immediately
after, hydrazine (8 mL) was added to complete the reaction and the
mixture was allowed to reflux for 1 h. After cooling to room tem-
perature, it was placed in a fridge overnight. The resulting
yellow precipitate (D, 4-hydrazinyl-5,6,7,8-tetrahydro-[1]benzo-
thieno[2,3-d]pyrimidine, 24.1 g, 85%) was filtered and washed with
a cold solution of 40% EtOH in H2O. An aliquot of D (1 mmol) was
mixed with 1.2 equiv of the corresponding aldehyde or ketone and
dissolved in EtOH (10 to 15 mL), and the mixture was then refluxed
from 2 to 48 h. After cooling to room temperature, it was placed
overnight in a fridge and the colored-formed solid (1–38, 2-
(5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-4-yl)hydra-
zone-derivative, 20–99%) was filtered, washed with a solution of
cold 80% EtOH in H2O, and recrystallized from EtOH.
Supplementary data
Supplementary data (1H and 13C NMR), elemental analysis, indi-
vidual tables for each test with cell/microorganism control, NCI re-
sults for 21, different Log P calculations of all tested compounds
and a brief description of the anti-M. tuberculosis and anti-L. ama-
zonensis bioassays) associated with this article can be found, in the
References and notes
1. (a) Danzon, P. M. Nature 2007, 449, 176; (b) Nwaka, S.; Hudson, A. Nat. Rev.
Drug Disc. 2006, 5, 941; (c) Ioset, J.-R. Curr. Org. Chem. 2008, 12, 643; (d) Chung,
M. C.; Ferreira, E. I.; Santos, J. L.; Giarolla, J.; Rando, D. G.; Almeida, A. E.;
Bosquesi, P. L.; Menegon, R. F.; Blau, L. Molecules 2008, 13, 616.
2. (a) Buckner, F. S.; Wilson, A. J.; White, T. C.; Van Voorhis, W. C. Antimicrob.
Agents Chemother. 1998, 40, 3245; (b) El-Sayed, N.; Myler, P. J.; Bartholomeu, D.
C.; Nilsson, D.; Aggarwal, G.; Tran, A.-N.; Ghedin, E.; Worthey, E. A.; Delcher, A.;
Blandin, G.; Westenberger, S.; Caler, E.; Cerqueira, G. C. Science 2005, 309, 409.
Houben, E.; Nguyen, L.; Pieters, J. Curr. Opin. Microbiol. 2006, 9, 76.
4. (a) Herwaldt, B. L. Lancet 1999, 354, 1191; (b) Dujardin, J.-C. Trends Parasitol.
2006, 22, 4.
5. (a) Rivers, E. C.; Mancera, R. L. Curr. Med. Chem. 2008, 15, 1956; (b) Ormerod, L.
P. Arch. Dis. Child. 1998, 78, 169.
6. (a) Larabi, M.; Yardley, V.; Loiseau, P. M.; Appel, M.; Legrand, P.; Gulik, A.;
Bories, C.; Croft, S. L.; Barratt, G. Antimicrob. Agents Chemother. 2003, 47, 3774;
(b) Deray, G. J. Antimicrob. Chemother. 2002, 49, 37.
7. Dorlo, T. P. C.; van Thiel, P. P. A. M.; Huitema, A. D. R.; Keizer, R. J.; de Vries, H. J.
C.; Beijnen, J. H.; de Vries, P. J. Antimicrob. Agents Chemother. 2008, 52, 2855.
8. (a) Filardi, L. S.; Brener, Z. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 755; (b) Nozaki,
T.; Dvorak, J. A. Parasitol. Res. 1993, 79, 451.
9. (a) Feng, Y.; Jadhav, A. P.; Rodighiero, C.; Fujinaga, Y.; Kirchhausen, T.; Lencer,
W. I. EMBO Rep. 2004, 5, 596; (b) Yarrow, J. C.; Feng, Y.; Perlman, Z. E.;
Kirchhausen, T.; Mitchison, T. J. Comb. Chem. High Throughput Screening 2003, 6,
279.
10. (a) Horiuchi, T.; Chiba, J.; Uoto, K.; Soga, T. Bioorg. Med. Chem. Lett. 2009, 19,
305; (b) Jennings, L. D.; Kincaid, S. L.; Wang, Y. D.; Krishnamurthy, G.; Beyer, C.
F.; Mginnis, J. P.; Miranda, M.; Discafani, C. M.; Rabindran, S. K. Bioorg. Med.
Chem. Lett. 2005, 15, 4731.
11. (a) Patil, C. D.; Sadana, G. S. J. Indian Chem. Soc. 1991, 68, 169; (b) Chambhare, R.
V.; Khadse, B. G.; Bobde, A. S.; Bahekar, R. H. Eur. J. Med. Chem. 2003, 38, 89.
12. (a) Tranberg, C. E.; Zickgraf, A.; Giunta, B. N.; Luetjens, H.; Figler, H.; Murphree,
L. J.; Falke, R.; Fleischer, H.; Linden, J.; Scammells, P. J.; Olsson, R. A. J. Med.
Chem. 2002, 45, 382; (b) El-Baih, F. E. M.; Al-Blowy, H. A. S.; Al-Hazimi, H. M.
Molecules 2006, 11, 498; (c) Bogolubsky, A. V.; Ryabukhin, S. V.; Stetsenko, S. V.;
Chupryna, A. A.; Volochnyuk, D. M.; Tolmachev, A. A. J. Comb. Chem. 2007, 9,
661.
13. (a) Aponte, J. C.; Verástegui, M.; Málaga, E.; Zimic, M.; Quiliano, M.; Vaisberg, A.
J.; Gilman, R. H.; Hammond, G. B. J. Med. Chem. 2008, 51, 6230; (b) Aponte, J. C.;
Vaisberg, A. J.; Rojas, R.; Sauvain, M.; Lewis, W. L.; Lamas, G.; Sarasara, C.;
Gilman, R. H.; Hammond, G. B. J. Nat. Prod. 2009, 72, 524; (c) Aponte, J. C.;
Vaisberg, A. J.; Rojas, R.; Caviedes, L.; Lewis, W. L.; Lamas, G.; Sarasara, C.;
Gilman, R. H.; Hammond, G. B. J. Nat. Prod. 2008, 71, 102.
14. (a) Briel, D.; Rybak, A.; Kronbach, C.; Unverferth, K. Pharmazie 2008, 63, 823; (b)
Bhaskar, V. H.; Kumar, M.; Sangameswaran, B.; Balakrishnan, B. R. Inter. J. Chem.
Sci. 2007, 5, 2076; (c) Bhaskar, V. H.; Gokulan, P. D. Oriental. J. Chem. 2007, 23,
999.
6.3. In vitro, in vivo bioassays and calculation of physico-
chemical parameters
BTPs were evaluated against T. cruzi trypomastigotes in vitro,13a
and in vivo;16 against L. amazonensis axenic amastigotes in vitro
and in vivo;20 against tumorogenic cell lines in vitro,13b and against
M. tuberculosis in vitro under (MABA)19a,b and (LORA)19c assays,
using previously reported methodologies. BTPs physicochemical
properties were calculated using literature methods.13a,17
Acknowledgments
15. (a) Santagati, N. A.; Caruso, A.; Cutuli, V. M.; Caccamo, F. IL Farmaco 1995, 50,
689; (b) Gundla, R.; Kazemi, R.; Sanam, R.; Muttineni, R.; Sarma, J. A. R. P.;
Dayam, R.; Neamati, N. J. Med. Chem. 2008, 51, 3367.
16. (a) Canavaci, A. M. C.; Bustamante, J. M.; Padilla, A. M.; Perez-Brandan, C. M.;
Simpson, L. J.; Xu, D.; Boehlke, C. L.; Tarleton, R. L. PLoS Negl. Trop. Dis.
Submitted for publication; (b) Bustamante, J. M.; Bixby, L. M.; Tarleton, R. L.
Nat. Med. 2008, 14, 542.
17. (a) Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714; (b) Zhao, Y.;
Abraham, M. H.; Lee, J.; Hersey, A.; Luscombe, N. C.; Beck, G.; Sherborne, B.;
Cooper, I. Pharm. Res. 2002, 19, 1446; (c) Lipinski, C. A.; Lombardo, F.; Dominy,
G.B.H. and J.C.A. wish to acknowledge the early contribution of
Mr. Devin Pantess (University of Louisville) and Dr. Rosario Rojas
(Universidad Peruana Cayetano Heredia) in the synthesis of BTPs
and their anti-tuberculosis screening. The authors are grateful to
the USA Department of Defense Prostate Cancer Research Program
(PCRP) of the Office of the Congressionally Directed Medical Re-
search Programs (CDMRP) (Grant #W81XWH-07-1-0299 to