As a result of their diverse structural variety, profound
biological activity, and synthetic utility, approaches to
R-hydroxy-â-amino carboxylate classes have received in-
creased attention over the past decade. Although these
methods often proceed with satisfactory to high levels of
stereocontrol,11 final target preparation usually requires many
steps. Classical approaches, such as homologation of R-amino
aldehydes 6 via cyanohydrin,12 2-(TMS)-thiazole,13 or
orthothioformate14 procedures, continue to receive consider-
able attention due to their utility and practicality, even though
products obtained by these protocols are diastereomeric at
the newly created R-hydroxy center. Although each of the
above methods has merits, limitations in scope are also
evident.
Our exploratory programs on small molecule covalent
inhibitors of the blood coagulation proteases thrombin (fIIa)15
and factor Xa (fXa),16 the plasminogen activator urokinase
(uPA),17 and the NS3A hepatitis C virus (HCV) protease18
necessitated the development of new synthetic technology
for the rapid construction of diverse R-hydroxy-â-amino
carboxylic amide and acid derivatives such as 7 and 8 (Figure
2). In our laboratories, elaboration of these intermediates is
followed by a late-stage oxidation step, which minimizes
racemization issues with the P1-R-ketoamide targets 9.5,11,14
Figure 2. Strategy for the construction of R-hydroxy-â-amino
amides 7 and corresponding acids 8 from aldehyde 1 and their
potential elaboration into R-ketoamide subunit 9. PG denotes
N-protecting group.
We envisioned that application of the classic Passerini
reaction employing N-R-protected amino aldehydes 6 as
substrates would provide a novel, concise approach to these
key synthons while complimenting current and more tradi-
tional protocols. In this Letter, we report the successful
implementation of this strategy, which has demonstrated
broad scope and general utility.
The Passerini reaction is a powerful, atom-economical,
multiple-component reaction (MCR) between isonitrile,
aldehyde (or ketone), and carboxylic acid components19 that
generates a significantly more complex R-acyloxy-carbox-
amide adduct. Related protic or Lewis acid-catalyzed pro-
cesses20 between isonitrile, aldehyde (or ketone), and water
components afford R-hydroxyamide derivatives. The scope
of the latter reactions may be limited since they occur under
vigorous, highly acidic conditions that may not be tolerated
by delicate or sensitive functionalities.
(7) Webb, T. R. Miller, T. A.; Vlasuk, G. P. U.S. Pat. 5371072, 1994.
(8) Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett, R.; Carroll,
R. M.; Straub, J. A.; Tkacz, J. N.; Wu, C.; Musso, G. J. Med. Chem. 1994,
37, 2918.
(9) (a) Fusetani, N.; Matsunaga, S.; Matsumoto, H.; Takebayashi, Y. J.
Am. Chem. Soc. 1990, 112, 7053. (b) Maryanoff, B. E.; Greco, M. N.; Zhang,
H. C.; Andrade-Gordon, P.; Kauffman, J. A.; Nicolaou, K. C.; Liu, A.;
Brungs, P. H. J. Am. Chem. Soc. 1995, 117, 1225.
In accordance with the proposed Passerini mechanism,19c
reaction of protected R-amino aldehydes 6, isonitriles 10,
and trifluoroacetic acid in the presence of a pyridine-type
base leads directly to R-hydroxy-â-amino amide derivatives
7 in moderate to excellent yield (Scheme 1). Presumably,
the reaction proceeds through trifluoroacetoxy intermediate
11, which undergoes facile hydrolysis upon extractive
workup with saturated aqueous sodium bicarbonate solution
and/or silica gel flash chromatographic purification, and
delivers product 7.21 Thus, application of this technology
allows for the concise construction of R-hydroxy-â-amino
amide-containing molecules that traditionally require many
steps to prepare.
The reactions proceed under mild, nearly neutral condi-
tions, typically from 0 °C to ambient temperature. Dichloro-
methane is the solvent of choice. In our hands, this chemistry
is readily scalable from 0.1 mmol to 0.5 mol. In cases with
less reactive aldehyde or isonitrile components, higher
reactant concentrations (ca. 0.5-5 M) or slow removal of
solvent affords the best yield of adduct 7.
(10) (a) Schmidt, U. Weinbrenner, S. J. Chem. Soc., Chem. Commun.
1994, 1003. (b) Wasserman, H. H.; Peterson, A. K. J. Org. Chem. 1997,
62, 8972.
(11) For an excellent compilation of the leading stereospecific and
asymmetric approaches to R-hydroxy-â-amino acids and amides, see:
Wasserman, H. H.; Xia, M.; Jorgensen, M. R.; Curtis, E. A. Tetrahedron
Lett. 1999, 40, 6163 and references therein.
(12) See refs 4a, 5a, 7, 8, 9b,c and Iizuka, K.; Kamijo, T.; Harada, H.;
Akahane, K.; Kuboto, T.; Umeyama, H.; Kiso, Y. J. Med. Chem. 1990, 33,
2707.
(13) (a) Review: Dondoni, A.; Perrone, D. Aldrichimica Acta 1997, 30,
35. (b) Dondoni, A.; Perrone, D. Synthesis 1993, 1162. (c) Piron, J.; Tourwe,
D. Lett. Pept. Sci. 1995, 2, 229.
(14) (a) Brady, S. F.; Sisko, J. T.; Stauffer, K. J.; Colton, C. D.; Qui,
H.; Lewis, S. D.; Ng, A. S.; Shafer, J. A.; Bogusky, M. J.; Veber, D. F.;
Nutt, R. F. Bioorg. Med. Chem. 1995, 3, 1063. (b) Iwanowicz, E. J.; Lin,
J.; Roberts, D. G. M.; Michel, I, M.; Seiler, S. M. Bioorg. Med. Chem.
Lett. 1992, 2, 1607.
(15) (a) Minami, N. K.; Reiner, J. E.; Semple, J. E. Bioorg. Med. Chem.
Lett. 1999, 9, 2625. (b) Reiner, J. E.; Lim-Wilby, M. S.; Brunck, T. K.;
Uong, T. H.; Goldman, E. A.; Abelman, M. A.; Nutt, R. F.; Semple. J. E.;
Tamura S. Y. Bioorg. Med. Chem. Lett. 1999, 9, 895. (c) Semple, J. E.
Tetrahedron Lett. 1998, 39, 6645.
(16) (a) Tamura, S. Y.; Levy, O. E.; Reiner, J. E.; Uong, T. H.; Goldman,
E. A.; Brunck, T. K.; Semple, J. E. Bioorg. Med. Chem. Lett. 2000, 10,
745. (b) Ho, J. Z.; Levy, O. E.; Gibson, T. S.; Nguyen, K.; Semple, J. E.
Bioorg. Med. Chem. Lett. 1999, 9, 3459.
(17) Tamura, S. Y.; Weinhouse, M. I.; Roberts, C. A.; Goldman, E. A.;
Masukawa, K.; Anderson, S. M.; Cohen, C. R.; Bradbury, A. E.; Bernadino,
V. T.; Dixon, S. A.; Ma, M. G.; Nolan, T. G.; Brunck, T. K. Bioorg. Med.
Chem. Lett. 2000, 10, 983.
To illustrate the scope and generality of the method, 20
(18) Han, W.; Hu, Z.; Jiang, X.; Decicco, C. P. Bioorg. Med. Chem.
Lett. 2000, 10, 711 and references therein.
(20) (a) Aqueous mineral acid-catalyzed versions: Hagedorn, I.; Eholzer,
U. Chem. Ber. 1965, 98, 936. (b) Lewis-acid catalysis with BF3‚Et2O or
AlCl3 to directly produce R-hydroxyamides: Muller, E.; Zeeh, B. Liebigs
Ann. Chem. 1966, 696, 72. (c) BF3‚Et2O catalysis: Muller, E.; Zeeh, B.
Liebigs Ann. Chem. 1968, 715, 47. (d) TiCl4 activation: Carofiglio, T.;
Cozzi, P. G.; Floriani, C.; Chiesa-Villa, A.; Rizzoli, C. Organometallics
1993, 12, 2726. (f) Seebach, D.; Adam, G.; Gees, T.; Schiess, M.; Weigand,
W. Chem. Ber. 1988, 121, 507. (g) Seebach, D.; Schiess, M. HelV. Chim.
Acta 1983, 66, 1618.
(19) (a) Passerini, M. Gazz. Chim. Ital. 1921, 51, 126. (b) Passerini, M.;
Ragni, G.; Gazz. Chim. Ital. 1931, 61, 964. (c) Ugi, I. in Isonitrile Chemistry;
Ugi, I., Ed.; Academic Press: New York, 1971, Chapter 7. (d) Bienayme,
H. Tetrahedron Lett. 1998, 39, 4255. (e) Armstrong, R. W.; Combs, A. P.;
Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29,
123. (f) Ziegler, T.; Kaisers, H. J.; Schlomer, R.; Koch, C. Tetrahedron
1999, 55, 8397.
2770
Org. Lett., Vol. 2, No. 18, 2000