J. H. van Boom et al.
FULL PAPER
H-4a, J4a,4b À13.4 Hz, J3,4a 5.7 Hz), 1.86 (d, 1H, H-4b), 1.36, 1.29 (2 Â s,
6H, CH3 BDA); 13C{1H} NMR (CDCl3): d 138.4, 137.4 (2 Â Cq Ph),
128.6 ± 127.6 (CH arom), 109.5 (C-5), 99.7 (2 Â Cq BDA), 79.2 (C-3), 75.4,
75.1, 75.0 (C-2, 2 Â CH2 Bn) 72.1, 71.9, 70.9, 66.2 (C-7, C-8, C-9, C-10), 66.2
(C-11), 48.1, 48.0 (2 Â CH3 OMe), 42.0 (C-4), 17.9, 17.7 (2 Â CH3 BDA);
1H, H-2a, J2a,2b À10.3 Hz, J2a,3 6.1 Hz), 4.18 (t, 1H, H-9, J8,9 J9,10
9.8 Hz), 3.86 (dd, 1H, H-2b, J2b,3 3.1 Hz), 3.85 (t, 1H, H-8, J7,8 9.9 Hz),
3.81 (ddd, 1H, H-7, J7,11a 1.8 Hz, J7,11b 3.0 Hz), 3.66 (ABX, 2H, H-11,
J10a,10b À13.6 Hz), 3.57 (d, 1H, H-10), 3.51 (s, 3H, OMe MTPA ester),
3.31, 3.21 (2 Â s, 6 H, 2 Â OMe BDA), 2.41 (dd, 1H, H-4a, J4a,4b À14.4 Hz,
J3,4a 7.8 Hz), 2.03 (dd, 1H, H-4b, J3,4b 1.3 Hz), 1.35, 1.28 (2 Â s, 6 H, 2 Â
[a]2D0 106.8 (c 1.0 CHCl3); MS (ES): 548 [MNH4] , 553 [MNa] ;
C29H38O9: calcd C 65.64, H 7.22; found: C 65.44, H 7.20.
CH3 BDA); MS (ES): 769 [MNa] .
S-Mosher ester derivative of (3S,5R,7R,8R,9S,10R,2'S,3'S)-10-benzyloxy-
7-benzyloxymethyl-8,9-di-O-(2',3'-dimethoxy-2',3'-dioxybutane-2',3'-diyl)-
3-hydroxy-1,6-dioxaspiro[4.5]decane: 1H NMR (600 MHz, H ± H COSY,
CDCl3): d 7.50 ± 7.21 (m, 15H, H arom), 5.36 (m, 1H, H-3), 4.88 (AB, 2H,
CH2 Bn, J À11.9 Hz), 4.46 (AB, 2H, CH2 Bn, J À12.2 Hz), 4.37 (dd,
(1R,2''S,3''S)-1,5-Di-O-benzyl-2,3-di-O-(2'',3''-dimethoxybutane-2'',3''-di-
yl)-1-(2'-furyl)-d-lyxitol (21): Spiroketalization of triols (2S)-15(2R)-16
(0.25 g, 0.46 mmol) according to the conditions listed in entry 2 of Table 1
gave, in addition to the spiroketals (3R)-19a and (3S)-20a, furan derivative
21 as a higher running product according to TLC analysis. Yield 36%
(85 mg, 0.17 mmol); Rf 0.82 (toluene/EtOAc/MeOH, 180:50:5, v/v/v);
1H NMR (200 MHz, CDCl3): d 7.41 ± 7.16 (m, 11H, H-5', H arom), 6.50 (d,
1H, H-2', J2',3' 3.4 Hz), 6.37 (dd, 1H, H-4', J3',4' 1.8 Hz), 4.91 (d, 1H, H-1,
J1,2 2.9 Hz), 4.53 (AB, 2H, CH2 Bn, J À12.4 Hz), 4.49 (s, 2H, CH2 Bn),
1H, H-2a, J2a,2b À10.3 Hz, J2a,3 6.0 Hz), 4.19 (t, 1H, H-9, J8,9 J9,10
9.6 Hz), 3.93 (dd, 1H, H-2b, J2b,3 3.7 Hz), 3.86 (m, 2H, H-8, H-7), 3.68
(ABX, 2H, H-11, J11a,11b À11.5 Hz, J7,11a 2.9 Hz, J7,11b 4.2 Hz), 3.56 (d,
1H, H-10), 3.46 (s, 3H, OMe MTPA ester), 3.32, 3.21 (2 Â s, 6 H, 2 Â OMe
BDA), 2.40 (dd, 1H, H-4a, J4a,4b À14.4 Hz, J3,4a 8.0 Hz), 1.99 (d, 1H,
4.18 (dd, 1H, H-3, J3,4 5.7 Hz, J2,3 9.6 Hz), 3.82 (dd, 1H, H-2, J1,2
H-4b), 1.35, 1.29 (2 Â s, 6 H, 2 Â CH3 BDA); MS (ES): 769 [MNa] .
2.9 Hz), 3.74 ± 3.55 (m, 3H, H-4, H-5), 3.23 (s, 3H, CH3 OMe), 3.21 (brs,
1H, OH), 2.91 (s, 3H, CH3 OMe), 1.28, 1.22 (2 Â s, 6 H, 2 Â CH3 BDA);
13C{1H} NMR (CDCl3): d 152.2 (C-2'), 141.5 (C-5'), 138.1, 137.9 (2 Â Cq
Ph), 128.6 ± 127.5 (CH arom), 110.4, 109.1 (C-3', C-4'), 99.0, 98.3 (2 Â Cq
BDA), 72.8, 71.7, 70.0, 68.3 (C-1, C-2, C-3, C-4), 73.1, 70.7, 70.2 (2 Â CH2 Bn,
C-5), 47.8, 47.5 (2 Â CH3 OMe), 17.4, 16.9 (2 Â CH3 BDA); MS (ES): 535
(3R,5S,7R,8R,9S,10R)-10-Benzyloxy-7-benzyloxymethyl-3,8,9-trihydroxy-
1,6-dioxaspiro[4.5]decane [(3R)-17a]: The a/b mixture of spiroketal (3R)-
19 obtained in entry 3, Table 1 (0.19 g, 0.36 mmol) was dissolved in aqueous
trifluoroacetic acid (95%, 8 mL) and was stirred for 2 h. The reaction
mixture was concentrated in vacuo and coevaporated with toluene (2 Â
5 mL). The oily residue was purified by column chromatography (light
petroleum/EtOAc, 1:1 ! 0:1, v/v) to give (3R)-17a as a white foam. Yield
73% (0.11 g, 0.26 mmol). 1H NMR (600 MHz, H ± H COSY, CDCl3): d
7.44 ± 7.25 (m, 10H, H arom), 4.90 (AB, 2H, CH2 Bn, J À11.0 Hz), 4.56
[MNa] , 551 [MK] ; C29H36O8: calcd C 67.95, H 7.08; found: C 68.08, H
7.06.
Preparation of the Mosher ester derivatives of (3R)-19a and (3S)-20a: The
BDA-protected spiroketal 19a or 20a (3.3 mg, 6.2 mmol) and (N,N-
dimethyl)aminopyridine (0.2 mg, 1.6 mmol) were coevaporated with freshly
distilled (CaH2) pyridine (2 Â 1 mL). The residue was dissolved in a mixture
of 1,2-dichloroethane and pyridine (3 mL, 2:1, v/v) which was concentrated
to a volume of 0.5 mL. The solution was stirred with molecular sieves (3 )
under an Ar atmosphere and subsequently (R)-(À)- or (S)-()-2-methoxy-
2-(trifluoromethyl)phenylacetic acid chloride (2.9 mL, 16 mmol) was added
by syringe. After 3 h the reaction mixture was filtered over a layer of silica
gel (0.6 Â 6.0 cm) which was eluted with 1,2-dichloroethane (10 mL). The
solution was washed with H2O (5 mL), 2% aqueous NaHCO3 (5 mL), H2O
(5 mL), dried over MgSO4 and concentrated. Traces of organic solvents
were removed by coevaporation with carbon tetrachloride. The products
obtained in this way were of enough purity for analysis by NMR
spectroscopy. Note that the use of (R)-acid results in the formation of the
(S)-ester. See Scheme 2 for a summary of the spectroscopic analysis of the
Mosher esters.
(AB, 2H, CH2 Bn, J À12.2 Hz), 4.20 (m, 1H, H-3), 4.03 (t, 1H, H-9, J8,9
J9,10 9.3 Hz), 3.85 (dd, 1H, H-2a, J2a,2b À9.4 Hz, 4J2a,4b 1.4 Hz), 3.83 (m,
1H, H-7), 3.80 (dd, 1H, H-2b, J2b,3 2.5 Hz), 3.64 (ABX, 2H, H-11, J7,11a
4.3 Hz, J7,11b 4.2 Hz, J11a,11b À10.5 Hz), 3.57 (t, 1H, H-8, J7,8 9.6 Hz),
3.40 (d, 1H, H-10), 3.38 (brs, 3H, OH), 2.16 (dd, 1H, H-4a, J4a,4b
À14.5 Hz, J3,4a 5.4 Hz), 1.95 (dd, 1H, H-4b); 13C{1H} NMR (CDCl3):
d 136.8 (2 Â Cq Ph), 129.2 ± 127.7 (CH arom), 107.1 (C-5), 79.5, 75.6, 72.5,
71.8, 71.5 (C-3, C-7, C-8, C-9, C-10), 75.7, 75.5 (2 Â CH2 Bn), 73.6 (C-2), 70.0
(C-11), 45.5 (C-4); MS (ES): 439 [MNa] ; [a]2D0: 8.8 (c 0.5 CHCl3);
C23H28O7: calcd C 66.33, H 6.78; found: C 66.39, H 6.77.
(3S,5S,7R,8R,9S,10R)-10-Benzyloxy-7-benzyloxymethyl-3,8,9-trihydroxy-
1,6-dioxaspiro[4.5]decane [(3S)-18a]: The a/b mixture of spiroketal (3S)-
20 obtained in entry 3, Table 1 (99 mg, 0.19 mmol) was converted into (3S)-
18a as described for the preparation of (3R)-17a. Yield 69% (55 mg,
1
0.13 mmol); H NMR (600 MHz, H ± H COSY, CDCl3): d 7.42 ± 7.23 (m,
R-Mosher ester derivative of (3R,5S,7R,8R,9S,10R,2'S,3'S)-10-benzyloxy-
7-benzyloxymethyl-8,9-di-O-(2',3'-dimethoxy-2',3'-dioxybutane-2',3'-diyl)-
3-hydroxy-1,6-dioxaspiro[4.5]decane: 1H NMR (600 MHz, H ± H COSY,
CDCl3): d 7.59 ± 7.21 (m, 15H, H arom), 5.50 (m, 1H, H-3), 4.76 (AB, 2H,
CH2 Bn, J À11.5 Hz), 4.55 (AB, 2H, CH2 Bn, J À12.1 Hz), 4.19 (t, 1H,
10H, H arom), 4.77 (AB, 2H, CH2 Bn, J À11.6 Hz), 4.53 (AB, 2H, CH2
Bn, J À12.1 Hz), 4.28 (m, 1H, H-3), 4.13 (dd, 1H, H-2a, J2a,2b À9.9 Hz,
J2a,3 4.6 Hz), 3.96 (d, 1H, H-2b), 3.94 (t, 1H, H-9, J8,9 J9,10 9.2 Hz), 3.88
(m, 1H, H-7), 3.60 (ABX, 2H, H-11, J7,11a 3.2 Hz, J7,11b 6.6 Hz, J11a,11b
À10.3 Hz), 3.44 (t, 1H, H-8, J7,8 9.2 Hz), 3.42 (d, 1H, H-10), 3.10 (brs, 3H,
OH), 2.13 (dd, 1H, H-4a, J4a,4b À13.4 Hz, J3,4a 5.7 Hz), 1.87 (d, 1H,
H-4b); 13C{1H} NMR (CDCl3): d 137.7, 137.6 (2 Â Cq Ph), 128.5 ± 127.6
(CH arom), 107.7 (C-5), 78.8, 75.2, 71.8, 71.3, 70.5 (C-3, C-7, C-8, C-9, C-10),
77.9, 75.2, 73.4, 69.9 (2 Â CH2 Bn, C-2, C-11), 41.5 (C-4); MS (ES): 439
H-9, J9,10 J8,9 9.8 Hz), 4.15 (dd, 1H, H-2a, J2a,2b À10.7 Hz, J2a,3
5.9 Hz), 4.05 (dd, 1H, H-2b, J2b,3 2.2 Hz), 3.84 (ddd, 1H, H-7, J7,8
10.0 Hz, J7,11a 2.0 Hz, J9,11b 4.5 Hz), 3.74 (t, 1H, H-8), 3.69 ± 3.57 (m,
3H, H-11, H-10), 3.48 (s, 3H, OMe MTPA ester), 3.29, 3.19 (2 Â s, 6 H, 2 Â
OMe BDA), 2.30 (dd, 1H, H-4a, J4a,4b À13.9 Hz, J3,4a 8.0 Hz), 2.12 (dd,
1H, H-4b, J3,4b 4.5 Hz), 1.34, 1.28 (2 Â s, 6 H, 2 Â CH3 BDA); MS (ES): 769
[MNa] ; [a]2D0: 21.2 (c 0.5 CHCl3); C23H28O7: calcd C 66.33, H 6.78;
found: C 66.27, H 6.76.
[MNa] .
(3R,5S,7R,8R,9S,10R)-10-Benzyloxy-7-benzyloxymethyl-3,8,9-trihydroxy-
1,6-dioxaspiro[4.5]decane 3,8,9-tris-(di-O-benzyl)phosphate (22): A mix-
ture of compound (3R)-17a (85 mg, 0.20 mmol) and dibenzyloxy-(N,N-
diisopropylamino) phosphine[17] (21, 0.27 mL, 0.82 mmol) was dried by
coevaporation with 1,4-dioxane (2 Â 5 mL) and dissolved in 1,2-dichloro-
ethane (6 mL). A solution of 1H-tetrazole (72 mg, 1.0 mmol) in acetonitrile
(3.0 mL) was added under a N2 atmosphere. After 30 min TLC analysis
(light petroleum/Et2O, 1:1, v/v) showed complete conversion of starting
material into a higher running product (Rf 0.76). The reaction mixture
was cooled (08C), tert-butyl hydroperoxide (0.47 mL, 80% in di-tert-butyl
peroxide) was added and stirring was continued for 30 min. TLC analysis
revealed complete disappearance of the phosphite triester intermediate
into a lower running product. The reaction mixture was diluted with
EtOAc, washed with H2O, and dried (MgSO4), and concentrated in vacuo.
Compound 22 was obtained as a colorless oil after purification by column
chromatography (light petroleum/EtOAc, 3:1 ! 0:1, v/v). Yield 60%
(0.15 g, 0.12 mmol); Rf 0.53 (EtOAc/light petroleum, 3:2, v/v); 1H NMR
(CDCl3, 300 MHz, H ± H COSY): d 7.42 ± 7.03 (m, 40H, H arom), 5.11 ±
S-Mosher ester derivative of (3R,5S,7R,8R,9S,10R,2'S,3'S)-10-benzyloxy-
7-benzyloxymethyl-8,9-di-O-(2',3'-dimethoxy-2',3'-dioxybutane-2',3'-diyl)-
3-hydroxy-1,6-dioxaspiro[4.5]decane: 1H NMR (600 MHz, H ± H COSY,
CDCl3): d 7.49 ± 7.24 (m, 15H, H arom), 5.52 (m, 1H, H-3), 4.82 (AB, 2H,
CH2 Bn, J À11.6 Hz), 4.55 (AB, 2H, CH2 Bn, J À12.3 Hz), 4.19 (t, 1H,
H-9, J8,9 J9,10 9.8 Hz), 4.14 (dd, 1H, H-2a, J2a,2b À10.6 Hz, J2a,3
6.2 Hz), 3.95 (dd, 1H, H-2b, J2b,3 2.3 Hz), 3.84 (ddd, 1H, H-7, J7,8
10.2 Hz, J7,11a 1.9 Hz, J7,11b 4.3 Hz), 3.75 (t, 1H, H-8), 3.64 (ABX, 2H,
H-11, J11a,11b À11.0 Hz), 3.58 (d, 1H, H-10), 3.42 (s, 3H, OMe MTPA
ester), 3.29, 3.20 (2 Â s, 6 H, 2 Â OMe BDA), 2.36 (dd, 1H, H-4a, J4a,4b
À13.8 Hz, J3,4a 8.0 Hz), 2.19 (dd, 1H, H-4b, J3,4b 4.9 Hz), 1.34, 1.26 (2 Â
s, 6 H, 2 Â CH3 BDA); MS (ES): 769 [MNa] .
R-Mosher ester derivative of (3S,5S,7R,8R,9S,10R,2'S,3'S)-10-benzyloxy-
7-benzyloxymethyl-8,9-di-O-(2',3'-dimethoxy-2',3'-dioxybutane-2',3'-diyl)-
3-hydroxy-1,6-dioxaspiro[4.5]decane: 1H NMR (600 MHz, H ± H COSY,
CDCl3): d 7.51 ± 7.23 (m, 15H, H arom), 5.39 (m, 1H, H-3), 4.83 (AB, 2H,
CH2 Bn, J À11.5 Hz), 4.43 (AB, 2H, CH2 Bn, J À12.1 Hz), 4.34 (dd,
2702
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
0947-6539/00/0615-2702 $ 17.50+.50/0
Chem. Eur. J. 2000, 6, No. 15