3246
D. Alagille et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3243–3247
Table 2
Supplementary data
Competition binding affinity (Ki, nM) of compounds 1a–j using [3H]methoxy-PEPY.
Values are expressed as mean S.E.M. (nM) of at least three independent
experimentsa
Supplementary data (experimental details for the synthesis and
characterization of 7; 8; 9a–j; 1a,b,c,d,e,g,h,i,j; 2a,b,c,d,f; 3a,b,c,d,e
and 4a,b,c,d,f,g,h) associated with this article can be found, in the
1
1
a (CN/NO2) b (NO2/Br) c (CN/Cl)
0.36 0.01
f (CN/I)
d (CN/F)
e (CN/Br)
0.93 0.02 0.127 0.038 0.36 0.09
0.106 0.023
j (Br/Br)
g (NO2/F)
h (NO2/I)
i (Br/F)
2.14 0.82
0.30 0.02 1.84 0.47
1.06 0.90
0.69 0.28
References and notes
Literature
values
MPEP
1224
MTEP
1624
F-PEB
F-MTEB
1. Kew, J. N. C.; Kemp, J. A. Psychopharmacology 2005, 179, 4.
2. Oswald, R. E.; Ahmed, A.; Fenwick, M. K.; Loh, A. P. Curr. Drug Targets 2007, 8,
573.
Ki
0.20 0.0128 0.08 0.0228
a
3. Pin, J. P.; Duvoisin, R. Neuropharmacology 1995, 34, 1.
4. Conn, P. J.; Pin, J. P. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 205.
5. Chen, N.; Luo, T.; Raymond, L. A. J. Neurosci. 1999, 19, 6844.
6. Snyder, E. M.; Philpot, B. D.; Huber, K. M.; Dong, X.; Fallon, J. R.; Bear, M. F. Nat.
Neurosci. 2001, 4, 1079.
7. Yu, S. P.; Yeh, C. H.; Sensi, S. L.; Gwag, B. J.; Canzoniero, L. M.; Farhangrazi, Z. S.;
Ying, H. S.; Tian, M.; Dugan, L. L.; Choi, D. W. Science 1997, 273, 114.
8. Gasparini, F.; Lingenhohl, K.; Stoehr, N.; Flor, P. J.; Heinrich, M.; Vranesic, I.;
Biollaz, M.; Allgeier, H.; Heckendorn, R.; Urwyler, S.; Varney, M. A.; Johnson, E.
C.; Hess, S. D.; Rao, S. P.; Sacaan, A. I.; Santori, E. M.; Velicelebi, G.; Kuhn, R.
Neuropharmacology 1999, 38, 1493.
9. Aguirre, J. A.; Kehr, J.; Yoshitake, T.; Liu, F. L.; Rivera, A.; Fernandez-Espinola, S.;
Andbjer, B.; Leo, G.; Medhurst, A. D.; Agnati, L. F.; Fuxe, K. Brain Res. 2005, 1033,
216.
10. Breysse, N.; Amalric, M.; Salin, P. J. Neurosci. 2003, 23, 8302.
11. Mela, F.; Marti, M.; Dekundy, A.; Danysz, W.; Morari, M.; Cenci, M. A. J.
Neurochem. 2007, 101, 484.
In this assay MPEP Ki = 18.7 nM.
averaging 1.27 nM in all four series. No simple trend appeared in
the four series; the average activities gave the following group
ranking:
4 (0.97 nM) > 1 (1.42 nM) P 2 (1.49 nM) > 3
(2.51 nM). However the classification of group 4 the best and 3
the worst is not totally satisfying, since series 3 contained both
the most potent antagonist (3d, IC50 = 0.32 nM) and the least po-
tent (3b IC50 = 7.36 nM). Comparison of groups b versus e (NO2/
Br vs CN/Br), g versus d (NO2/F vs CN/F) as well as h versus f
(NO2/I vs CN/I) indicate the feasibility of substitution of the cy-
ano group by a nitro, leading to compounds with generally bet-
ter or equal activity (except 4h and 3b). Compounds of series 1
were further evaluated in a competition binding assay32 with
[3H]methoxy-PEPY on rat mGluR5-HEK293A cells membrane (Ta-
ble 2). All tested compounds had binding affinity in the low
nanomolar to subnanomolar range. The best compounds in this
series bore a cyano group (1c Ki = 0.12 nM and 1e Ki = 0.10 nM)
but subnanomolar binding affinity was also observed without
the presence of the cyano group, as exemplified by compounds
1b, 1g, and 1j (Ki = 0.3–0.9 nM); all those compounds have suffi-
cient affinity for potential application as mGluR5 brain imaging
agents (defined as Bmax/Kd >>1). Substitution with an iodo group
led in both cases (CN/I 1f, NO2/I 1h) to compounds with the
lowest binding affinity. The calculated lipophilicity of those com-
pound is relatively high, ranging from c Log P = 2.72 (4a) to 5.47
(1j), however those values are only estimates of the lipophilicity;
the experimental value of compound 2a Log D = 2.30 is well be-
low its calculated value c Log P = 5.16 and we therefore estimate
that most of these compounds exhibit a lipophilicity appropriate
for brain imaging application. None of the compounds have been
evaluated as P-gp substrate but their structural resemblance to
MPEP, MTEP, F-PEB, and F-MTEB (which are not P-gp substrates)
is a good indicator of low chances of being a P-gp substrate for
the new compounds.
In summary, we synthesized 3,5-disubstituted phenylethynyl
compounds in four series. All compounds are potent mGluR5 full
antagonists. We demonstrated the apparent equivalency between
the cyano and nitro group as one of the 3,5-substituents. Specific
trends are difficult to draw since each series seems to lead to dif-
ferent favorable 3,5-substitutents profile (compounds 1g, 2b, 3d,
and 4b were the best ligands in each series). The high-affinity com-
pound 1e might find application for imaging with 77Br or 76Br, but
this would not be as widely applicable as a radioiodinated ligand.
Among the compounds bearing an iodine 1h, 1f, 2f, 4f have prom-
ising in vitro potency, but the preliminary binding results (1f, 1h)
shows a relatively low affinity which might impair their use as
SPECT imaging agents.
12. Wieronska, J. M.; Branski, P.; Szewczyk, B.; Palucha, A.; Papp, M.; Gruca, P.;
Moryl, E.; Pilc, A. Pol. J. Pharmacol. 2001, 53, 659.
13. Li, X.; Need, A. B.; Baez, M.; Witkin, J. M. J. Pharmacol. Exp. Ther. 2006, 319, 254.
14. Belozertseva, I. V.; Kos, T.; Popik, P.; Danysz, W.; Bespalov, A. Y. Eur.
Neuropsychopharmacol. 2007, 17, 172.
15. Neugebauer, V. Pain 2002, 98, 1.
16. Zhu, C. Z.; Hsieh, G.; El-Kouhen, O.; Wilson, S. G.; Mikusa, J. P.; Hollingsworth, P.
R.; Chang, R.; Moreland, R. B.; Brioni, J. D.; Decker, M. W.; Honore, P. Pain 2005,
114, 195.
17. Chiamulera, C.; Epping-Jordan, M. P.; Zocchi, A.; Marcon, C.; Cottiny, C.;
Tacconi, S.; Corsi, M.; Orzi, F.; Conquet, F. Nat. Neurosci. 2001, 4, 873.
18. Lee, B.; Platt, D. M.; Rowlett, J. K.; Adewale, A. S.; Spealman, R. D. J. Pharmacol.
Exp. Ther. 2005, 312, 1232.
19. Hodge, C. W.; Miles, M. F.; Sharko, A. C.; Stevenson, R. A.; Hillmann, J. R.;
Lepoutre, V.; Besheer, J.; Schroeder, J. P. Psychopharmacology 2006, 183, 429.
20. Besheer, J.; Stevenson, R. A.; Hodge, C. W. Eur. J. Pharmacol. 2006, 551, 71.
21. McGeehan, A. J.; Olive, M. F. Synapse 2003, 47, 240.
22. Paterson, N. E.; Semenova, S.; Gasparini, F.; Markou, A. Psychopharmacology
2003, 167, 257.
23. Popik, P.; Wrobel, M. Neuropharmacology 2002, 43, 1210.
24. Hamill, T. G.; Krause, S.; Ryan, C.; Bonnefous, C.; Govek, S.; Seiders, T. J.;
Cosford, N. D. P.; Roppe, J.; Kamenecka, T.; Patel, S.; Gibson, R. E.; Sanabria, S.;
Riffel, K.; Eng, W.; King, C.; Yang, X.; Green, M. D.; O’Malley, S. S.; Hargreaves,
R.; Burns, H. D. Synapse 2005, 56, 205.
25. Wang, J.-Q.; Tueckmantel, W.; Zhu, A.; Pellegrino, D.; Brownell, A. L. Synapse
2007, 61, 951.
26. Adam, M. J.; Wilbur, D. S. Chem. Soc. Rev. 2005, 34, 153.
27. Patel, S.; Krause, S. M.; Hamill, T.; Chaudharyb, A.; Burns, H. D.; Gibson, R. E. Life
Sci. 2003, 27, 371.
28. Cosford, N. D. P.; Tehrani, L.; Roppe, J.; Schweiger, E.; Smith, N. D.; Anderson, J.;
Bristow, L.; Brodkin, J.; Jiang, X.; McDonald, I.; Rao, S.; Washburn, M.; Varney,
M. A. J. Med. Chem. 2003, 46, 204.
29. Alagille, D.; Baldwin, R. M.; Roth, B. L.; Wroblewski, J. T.; Grajkowska, E.;
Tamagnan, G. D. Bioorg. Med. Chem. Lett. 2005, 15, 945.
30. Alagille, D.; Baldwin, R. M.; Roth, B. L.; Wroblewski, J. T.; Grajkowska, E.;
Tamagnan, G. D. Bioorg. Med. Chem. 2005, 13, 197.
31. Rat mGluR5-HEK293A cells were loaded with calcium-sensitive dye according
to the manufacturer’s instructions (Calcium
3 kit; Molecular Devices,
Sunnyvale, CA) after incubation in glutamate/glutamine-free Dulbecco’s
Modified Eagle Medium (DMEM; Invitrogen) containing 10% dialyzed fetal
bovine serum for 5 h. Compound A (1 ml) from Calcium 3 kit was dissolved in
20 ml of 1Â Hanks’ balanced salt solution (HBSS; Invitrogen) containing
2.5 mM probenecid (Sigma), adjusted to pH 7.4. Cells were loaded for 50 min at
37 °C with 5% carbon dioxide. Dye was then carefully removed and cells were
washed with HBSS containing probenecid. Cells were maintained in the same
buffer at room temperature for the following assay. Test compound was added
5 min before the manual addition of glutamate. Glutamate was added at a
speed of 52
(Molecular Devices) at 25 °C. All of the peaks of the calcium response were
normalized to the maximum response to saturated dose of glutamate
(10 M). 1 M glutamate was used to generate EC80 response, allowing for a
lL/s and calcium flux was measured using a Flexstation II
a
Acknowledgment
l
l
response varying from 70% to 90% of the maximum. EC50 values were
calculated from nonlinear curve fitting using GraphPad Prism v. 4.01 and of
This work was supported by a grant from the National Institutes
of Health (DA16180) and a grant from NARSAD to G.D.T.