bic tags such as the tetrabenzo[a,c,g,i]fluorine (Tbf) moiety.9
As part of our interest in developing new methods for the
rapid synthesis and purification of functionalized intermedi-
ates, we have undertaken studies to develop affinity tags to
facilitate product sequestration and overall purification by
Diels-Alder resin capture/release10 processes. Utilization of
“cycloaddition-removable tags” (CRT’s) is highly under-
developed, and two examples have been documented in the
literature. Keana reported a 1,3-diene-containing phase-
transfer catalyst and its removal from reactions using a silica-
based triazolinedione (TAD) dienophile.11 Pieken and co-
workers have described a related method for solution-phase
synthesis of oligonucleotides using di-hexadienoxytrityl
protected nucleosides.12 A major benefit of CRT’s is the
possibility for highly orthogonal and chemoselective removal
of the tagged molecule. In this Letter, we wish to report our
initial studies on the use of anthracene-tagged13 protecting
groups in conjunction with a polymeric maleimide dienophile
(Figure 1).
Scheme 1. Synthesis and Reactivity of Benzylmaleimide
Resin 2
ation16 of unfunctionalized polystyrene resin (Scheme 1) for
more flexible control of maleimide loading. Treatment of
1% cross-linked polystyrene with N-chloromethylmaleimide
(1)17 and FeCl3 as catalyst18 led to the production of
N-benzylmaleimide resin (2) in loadings of 1.0-1.6 mmol/
g.19 Resin loadings were determined by elemental analysis
(N) and the active maleimide content further confirmed by
elemental analysis (Br) of resin 3 derived from cycloaddition
with anthracene derivative 4a.
Figure 1. Anthracenes as cycloaddition-removable tags (CRT’s).
To demonstrate transformations using anthracene tags, we
conducted Stille coupling20 reactions using 9-anthrylmethyl
esters13a,b (Table 1). Anthracene-tagged benzoates 4a-c were
In planning our studies, we required a suitable resin-bound
dienophile to facilitate sequestration of anthracene-tagged
compounds. Since maleimides are reactive dienophiles in
Diels-Alder cycloaddition,14 we focused on developing a
practical synthesis of a polystyrene-based maleimide. Al-
though benzylmaleimide resin has been prepared from
aminomethylpolystyrene,15 we employed maleimidomethyl-
Table 1. Parallel Stille Reactions Using 9-Anthrymethyl Ester
Tags
(7) Yoshida, J-i.; Itami, K.; Mitsudo, K.; Suga, S. Tetrahedron Lett. 1999,
40, 3403-3406.
(8) Zhang, S.-Q.; Fukase, K.; Kusumoto, S. Tetrahedron Lett. 1999, 40,
7479-7483.
(9) Ramage, R.; Swenson, H. R.; Shaw, K. T. Tetrahedron Lett. 1998,
39, 8715-8718.
(10) (a) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118,
2574-2583. (b) Siegel, M. G.; Hahn, P. J.; Dressman, B. A.; Fritz, J. E.;
Grunwell, J. R.; Kaldor, S. W. Tetrahedron Lett. 1997, 38, 3357-3360.
(c) Kulkarni, B. A.; Ganesan, A. Angew. Chem., Int. Ed. Engl. 1997, 36,
2454-2455. (d) Liu, Y.; Zhao, C.; Bergbreiter, D. E.; Romo, D. J. Org.
Chem. 1998, 63, 3471-3473. (e) Hu, Y.; Baudart, S.; Porco, J. A., Jr. J.
Org. Chem. 1999, 64, 1049-1051.
(11) (a) Keana, J. F. W.; Ward, D. D. Synth. Commun. 1983, 13, 729-
735. (b) Keana, J. F. W.; Guzikowski, A. P.; Ward, D. D.; Morat, C.; Van
Nice, F. L. J. Org. Chem. 1983, 48, 2654-2660.
(12) Pieken, W.; McGee, D.; Settle, A.; Zhai, Y.; Huang, J.; Hill, K.
WO 98/47910.
(13) (a) Stewart, F. H. C. Aust. J. Chem. 1965, 18, 1699-1703. (b)
Kornblum, N.; Scott, A. J. Am. Chem. Soc. 1974, 96, 590-591. (c)
Kornblum, N.; Scott, A. J. Org. Chem. 1977, 42, 399-400.
(14) (a) Fleischhauer, J.; Asaad, A. N.; Schleker, W.; Scharf, H.-D.
Liebigs Ann. Chem. 1981, 306-311. (b) Chung, Y.; Duerr, B. F.; McKelvey,
T. A.; Nanjappan, P.; Czarnik, A. W. J. Org. Chem. 1989, 54, 1018-1032.
(c) Thomas, I. P.; Ramsden, J. A.; Kovacs, T. Z.; Brown, J. M. Chem.
Commun. 1999, 1507-1508.
reacted in parallel with 2 equiv of aryl- or alkenylstannane
(5 mol % of Pd(PPh3)4, toluene, 100 °C, 12 h) using a
3510
Org. Lett., Vol. 2, No. 22, 2000