1548
C. Spiteri, J. E. Moses
LETTER
nitroaniline were insoluble in acetonitrile and, thus, it was
not possible to inject them within the reagent loop A.
Acknowledgment
We thank Vapourtec Ltd, for the loan of an R1Plus pump module.
We are grateful to the EPSRC and GSK for funding (C.S.).
We then progressed to thiobenzoic acid (14), which could
be manually injected into the flow reactor by using
pump C with 2,6-lutidine and methanol as solvent.17
Supporting Information for this article is available online at
r
t
iornat
Table 3 Substrate Scopea,b
O
O
References
NH2
N3
HN
Ph
HS
Ph
(14)
(1) (a) Noël, T.; Buchwald, S. L. Chem. Soc. Rev. 2011, 40,
5010. (b) Wegner, J.; Ceylan, S.; Kirschning, A. Chem.
Commun. 2011, 47, 4583.
t-BuONO
TMSN3
2,6-lutidine
MeCN,
50 min,
60 °C
MeOH–H2O
(1:1)
μW, 80 °C
R1
R1
R1
(2) (a) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Smith, C. D.;
Tranmer, G. K. Org. Lett. 2006, 8, 5321. (b) Sedelmeier, J.;
Ley, S. V.; Baxendale, I. R.; Baumann, M. Org. Lett. 2010,
12, 3618. (c) Brasholz, M.; Saubern, S.; Savage, G. P. Aust.
J. Chem. 2011, 64, 1397. (d) Bartrum, H. E.; Blakemore, D.
C.; Moody, C. J.; Hayes, C. J. Chem.–Eur. J. 2011, 17, 9586.
(e) Webb, D.; Jamison, T. F. Org. Lett. 2012, 14, 568.
(3) (a) O’Brien, M.; Baxendale, I. R.; Ley, S. L. Org. Lett. 2010,
12, 1596. (b) Bogdan, A. R.; James, K. Org. Lett. 2011, 13,
4060. (c) Lévesque, F.; Seeberger, P. H. Org. Lett. 2011, 13,
5008.
(4) For a selective review, see: Valeur, E.; Bradley, M. Chem.
Soc. Rev. 2009, 38, 606.
(5) For a selective review, see: Han, S.-Y.; Kim, Y.-A.
Tetrahedron 2004, 60, 2447.
(6) Castro, B.; Dormoy, J. R.; Evin, G.; Selve, C. Tetrahedron
Lett. 1975, 1219.
O
O
O
O
HN
Ph
HN
Ph
HN
Ph
HN
Ph
NO2
NO2
15 (90%)
16 (64%)
17 (10%)
18 (5%)
a Reaction conditions: aniline derivative (0.25 mmol), t-BuONO (1.0
equiv), TMSN3 (1.0 equiv), 14 (1.3 equiv), 2,6-lutidine (1.3 equiv).
b Isolated yields.
(7) Sheehan, J. C.; Hess, G. P. J. Am. Chem. Soc. 1955, 77,
1067.
(8) Fan, C.-X.; Hao, X.-L.; Ye, Y.-H. Synth. Commun. 1996, 26,
1455.
(9) Dourtoglou, V.; Ziegler, J.-C.; Gross, B. Tetrahedron Lett.
1978, 1269.
(10) (a) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today
2003, 8, 1128. (b) Moses, J. E.; Moorhouse, A. D. Chem.
Soc. Rev. 2007, 36, 1249. (c) Moorhouse, A. D.; Moses, J. E.
ChemMedChem 2008, 3, 715. (d) Spiteri, C.; Moses, J. E.
Angew. Chem. Int. Ed. 2010, 49, 31. (e) Moorhouse, A. D.;
Spiteri, C.; Sharma, P.; Zloh, M.; Moses, J. E. Chem.
Commun. 2011, 47, 230.
(11) Sharma, P.; Moorhouse, A. D.; Moses, J. E. Synlett 2011,
2384.
(12) Rosen, T.; Lico, I. M.; Chu, D. T. W. J. Org. Chem. 1988,
53, 1580.
(13) Shangguan, N.; Katukojvala, S.; Greenberg, R.; Williams,
L. J. J. Am. Chem. Soc. 2003, 125, 7754.
(14) (a) Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett.
2007, 9, 1809. (b) Moorhouse, A. D.; Moses, J. E. Synlett
2008, 2089. (c) Zhang, F.; Moses, J. E. Org. Lett. 2009, 11,
1587.
(15) (a) Stazi, F.; Cancogni, D.; Turco, L.; Westerduin, P.;
Bacchi, S. Tetrahedron Lett. 2010, 51, 5385. (b) Smith, C. J.;
Smith, C. D.; Nikbin, N.; Ley, S. L.; Baxendale, I. R. Org.
Biomol. Chem. 2011, 9, 1927. (c) Smith, C. J.; Nikbin, N.;
Ley, S. V.; Lange, H.; Baxendale, I. R. Org. Biomol. Chem.
2011, 9, 1938.
(16) Interestingly, the synthesis of 10 by this method offers an
orthogonal strategy towards divergent amide synthesis
without the need for protecting groups.
As observed with thioacetic acid (2), the reaction worked
best with electron-poor anilines (Table 3). In fact, 4-ni-
troaniline (1) afforded the desired amide 15 in an impres-
sive 90% yield, although the meta-substituted amide 16
was less efficient (64%). However, anilines substituted
with electron-releasing alkyne or methyl groups gave the
corresponding amide products 17 and 18 in much lower
yields (10 and 5%, respectively).
Although yields varied, it is noteworthy that electron-de-
ficient anilines were superior substrates for the transfor-
mation. This is in contrast to conventional amide
syntheses in which electron-deficient nucleophiles can
sometimes be problematic. Thus, the azidation–amidation
protocol offers a complementary route towards electron-
deficient aromatic amides.
To determine if our continuous flow process was amena-
ble to scale-up, we investigated the synthesis of amide 15.
Gratifyingly, scaling the reaction from 0.25 mmol to 7.5
mmol (1.0 g of 1), gave the target amide product 15 in
86% yield (1.5 g), over 18 h under continuous flow.
In conclusion, we have successfully developed a micro-
wave-enhanced azidation–amidation protocol under con-
tinuous flow process. The protocol is straightforward to
perform and is tolerant of a wide variety of substrates.
Furthermore, the flow chemistry enabled gram-scale
quantities of product to be produced. This technology has
the potential to find wide application in industry and of-
fers improved safety features over the batch process.
(17) Compound 14 and 2,6-lutidine in MeCN–H2O (1:1) formed
a white precipitate that could not be manually loaded into the
flow reactor.
Synlett 2012, 23, 1546–1548
© Georg Thieme Verlag Stuttgart · New York