10.1002/ejoc.201901860
European Journal of Organic Chemistry
COMMUNICATION
This work was financially supported by the National Natural
Science Foundation of China (No. 21602046), the MOST of China
(No. 2016YFE0132600) and the Doctor’s Scientific Research
Foundation of Henan University of Chinese Medicine (No.
BSJJ2016-12).
Scheme 2. Radical capture experiment in the presence of TEMPO.
Keywords: C-H trifluorometlylation • photochemistry •
organocatalysis • imidazopyridines • radical reaction • metal-free
A plausible mechanism for the C-H trifluoromethylation of
imidazo[1,2-a]pyridines is shown in Scheme 3. Under the
photocatalytic conditions, electron transfer from CF3SO2- to the
excited-state acridinium [PC]* is expected to efficiently generate
CF3SO2 and [PC]*- radicals. The cleavage of CF3SO2 radical
products CF3 radical and SO2. Subsequently, the CF3 radical
reacted with imidazo[1,2-a]pyridine 1a to produce the
[1]
(a) T. Hiyama, H. Yamamoto. Organofluorine Compounds (Eds.: H.
Yamamoto.), Springer, Heidelberg, 2000, vol. 6, pp. 183-233. (b) P.
Jeschke, ChemBioChem 2004, 5, 570-589; (c) K. Mꢀller, C. Faeh, F.
Diederich, Science 2007, 317, 1881-1886; (d) S. Purser, P. R. Moore, S.
Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-330; (e)
Fluorine in Medicinal Chemistry and Chemical Biology (Eds.: I. Ojima).
Wiley-VCH, UK, 2009; (f) Handbook of fluoropolymer science and
technology (Eds.: D. W. Smith, S. T. Iacono, S. S. Iyer), Wiley-VCH,
Hoboken, 2014; (g) J. Wang, M. Sꢁnchez-Rosellꢂ, J. L. Aceꢃa, C. del
Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem.
Rev. 2014, 114, 2432-2506.
intermediate C. Then, intermediate
C was oxidized and
dehydrogenated to generate compound 3a. [PC]*- was oxidized
by CF3SO2 radical to generate [PC] on the basis of their redox
potentials to finish the photocatalytic cycle.[4f]
[2]
For reviews, see: (a) T. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473,
470-477; (b) O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111,
4475-4521; (c) B. V. Sebastiꢁn, L. Beatriz, P. Al, Chem. Eur. J. 2014, 20,
16806-16829; (d) H. Egami, M. Sodeoka, Angew. Chem., Int. Ed. 2014,
53, 8294-8308; (e) J. Charpentier, N. Frꢀh, A. Togni Chem. Rev. 2015,
115, 650-682; (f) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 2015, 115,
683-730; (g) X.-H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 2015, 115,
731-764; (h) X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015,
115, 826-870; (i) G. Yin, X. Mu, G. Liu, Acc. Chem. Res. 2016, 49, 2413-
2423. For selected recent examples, see: (j) C. Le, T. Q. Chen, T. Liang,
P. Zhang, D. W. C. MacMillan, Science 2018, 360, 1010-1014; (k) M.
Lübbesmeyer, D. Leifert, H. Schäfer, A. Studer, Chem. Commun. 2018,
54, 2240-2243; (l) G. S. Sauer, S. Lin, ACS Catal. 2018, 8, 5175-5187;
(m) Z. Zhang, L. Zhang, Y. Cao, F. Li, G. Bai, G. Liu, Y. Yang, F. Mo,
Org. Lett. 2019, 21, 762-766; (n) Z. Ruan, Z. Huang, Z. Xu, G. Mo, X.
Tian, X. Yu, L. Ackermann, Org. Lett. 2019, 21, 1237-1240.
Scheme 3. Proposed reaction mechanism
[3]
[4]
(a) A. Studer, Angew. Chem., Int. Ed. 2012, 51, 8950-8958; (b) S. Barata-
Callejo, A. Postigo, Coord. Chem. Rev. 2013, 257, 3051-3069.
For reviews, see: (a) T. Chatterjee, N. Iqbal, Y. You, E. Cho, J. Acc.
Chem. Res. 2016, 49, 2284-2294; (b) X. Pan, H. Xia, J. Wu, Org. Chem.
Front. 2016, 3, 1163-1185. For selected examples, see: (c) J. D. Nguyen,
J. W. Tucker, M. D. Konieczynska, C. R. J. Stephenson, J. Am. Chem.
Soc. 2011, 133, 4160-4163; (d) Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D.
Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herle, N. Sach,
M. R. Collins, Y. Ishihara, P. S. Baran, Nature 2011, 492, 95-100; (e) D.
A. Nagib, D. W. C. MacMillan, Nature 2011, 480, 224-228; (f) L. Cui, Y.
Matusaki, N. Tada, T. Miura, B. Uno, A. Itoh, Adv. Synth. Catal. 2013,
355, 2203-2207; (g) P. Xu, J. Xie, Q. Xue, C. Pan, Y. Cheng, C. Zhu,
Chem. Eur. J. 2013, 19, 14039-14042; (h) S. Mizuta, S. Verhoog, K. M.
Engle, T. Khotavivattana, M. O’Duill, K. Wheelhouse, G. Rassias, M.
Medebielle, V. Gouverneur, J. Am. Chem. Soc. 2013, 135, 2505; (i) X. J.
Tang, W. R. Dolbier, Angew. Chem., Int. Ed. 2015, 54, 4246-4249; (j) J.
W. Beatty, J. J. Douglas, K. P. Cole, C. R. J. Stephenson, Nature
Commun. 2015, 6, 1-6; (k) J. Sun, X. Peng, H. Guo, Tetrahedron Lett.
2015, 56, 797-800.
In conclusion, we have developed an efficient and photoredox-
based protocol for the C-H trifluoromethylation of imidazo[1,2-
a]pyridines using acridinium as the photo redox catalyst and
CF3SO2Na as CF3 source. A series of the desired products were
afforded in satisfied yields under the transition-metal-free
condition, which displays potential for further application in
medicinal and agrochemical research.
Experimental Details.
Under N2 atmosphere, a reaction tube (25 mL) equipped with a magnetic
stirrer bar was charged with imidazo[1,2-a]pyridine (1, 0.3 mmol),
CF3SO2Na (2, 0.2 mmol), acridinium (0.01 mmol, 5 mol %) and 1,2-DCE
(2.0 mL). The reaction mixture was stirred with a 3 W blue LED irradiation
at room temperature for 24 h, filtered through a pad of celite and then
washed with CH2Cl2 (10 mL×3). The solvent was removed under reduced
pressure and the residue was purified by chromatography on silica gel
(elute: EA/PE) to give the desired product 3.
[5]
[6]
D. J. Wilger, N. J. Gesmundo, D. A. Nicewicz, Chem. Sci. 2013, 4, 3160-
3165.
(a) W. Fu, W. Guo, G. Zou, C. Xu, J. Fluorine Chem. 2012, 140, 88-94;
(b) S. P. Pitre, C. D. McTiernan, H. Ismaili, J. C. Scaiano, ACS Catal.
2014, 4, 2530-2535; (c) G. R. Park, Y. Choi, M. G. Choi, S. K. Chang, E.
J. Cho, Asian J. Org. Chem. 2017, 6, 436-440; (d) N. Noto, T. Koike, M.
Akita, Chem. Sci. 2017, 8, 6375-6379; (e) N. Noto, Y. Tanaka, T. Koike,
M. Akita, ACS Catal. 2018, 8, 9408-9419; (f) L.-Y. Xie, T.-G. Fang, J.-X.
Tan, B. Zhang, Z. Cao, L.-H. Yang, W.-M. He, Green Chem. 2019, 21,
Acknowledgements
This article is protected by copyright. All rights reserved.