8124
tolyldipyrromethane did not give corresponding expanded corroles. Obviously, the presence of
furanyl oxygen is essential in the case of ‘3+2’ type oxidative coupling. The template effect of a
Lewis acid must be involved in the coupling as previously indicated.14 The effect of inorganic
additives were not obvious, but somewhat related with applied solvent.
In conclusion, the direct oxidative coupling of tetrapyrromethanes is a convenient method of
obtaining high yields of corroles as the single product. In addition, the acid-free condition is
advantageous due to the lack of scrambling resulting from the reversible cleavage of starting
material. The preferable formation of corrole may be related with minimum macrocyclic angle
strain of the intermediate corrinogen. Due to the smaller cavity of corroles, their metal
complexes are even more efficient catalysts for various catalytic reactions than those mediated
by metalloporphyrins. The synthetic method described here could be an expedient way to the
various meso-substituted corroles and expanded corroles. The coupling of pentapyrromethanes
and other higher oligomers are under extensive investigation accompanying the studies of
physico-chemical properties of various metallocorroles.
Supplementary material
Proton NMR spectra, carbon spectra and MS data for compounds 3, 5 and 7 is available
electronically.
Acknowledgements
This work was supported by grants from the Korea Research Foundation (KRF-99-005-
D00042). NMR and Mass data were obtained from the central instrument facilities in Kangwon
National University.
References
1. (a) Smith, K. M. In Porphyrins and Metalloporphyrins; Smith, K. M. Ed.; Elsevier: Amsterdam, 1975; Vol. I, p.
3. (b) Genokhova, N. S.; Melent’eva, T. A.; Berezovskii, V. M. Russ. Chem. Rev. 1980, 49, 1056. (c) Melent’eva,
T. A. Russ. Chem. Rev. 1980, 52, 641.
2. Gross, Z.; Goldberg, I.; Simkhovich, L.; Galili, N.; Saltman, I.; Iyer, P.; Golubkov, G. Abstracts of ICPP-1
Dijon, France, 2000; p. 93.
3. Boschi, T.; Licoccia, S.; Paolesse, R.; Tagliatesta, P.; Azarnia, M. J. Chem. Soc., Dalton Trans. 1990, 463.
4. Kratky, C.; Farber, G.; Gruber, K.; Wilson, K.; Dauter, Z.; Nolting, H. F.; Konrat, R.; Krautler, B. J. Am.
Chem. Soc. 1995, 117, 4654.
5. Licoccia, S.; Luisa Di Vona, M.; Paolesse, R. J. Org. Chem. 1998, 63, 3190.
6. (a) Gross, Z.; Simkovich, L.; Galili, N. Chem. Commun. 1999, 599. (b) Gross, Z.; Galili, N.; Simkhovich, L.;
Saltman, I.; Botoshansky, M.; Blaser, D.; Boese, R.; Goldberg, I. Org. Lett. 1999, 1, 599.
7. Boschi, T.; Licoccia, S.; Paolesse, R.; Tagliatesta, P.; Tehran, M. A.; Pelizzi, G.; Vitali, F. J. Chem. Soc., Dalton
Trans. 1990, 463.
8. Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. Eng. 1969, 8, 781.
9. Cho, W. S.; Lee, C. H. Tetrahedron Lett. 2000, 41, 697.
10. Ka, J. W.; Lee, C. H. Tetrahedron Lett. 2000, 41, 4609.
11. Typical procedure for the coupling: 5,10,15-triphenyltetrapyrromethane (50 mg, 0.094 mmol) and ammonium
chloride (49 mg, 0.94 mmol) was dissolved in propionitrile (47 mL), then DDQ (64 mg, 0.28 mmol) was added