C O M M U N I C A T I O N S
Scheme 1. Intramolecular Addition of Alcohol to Olefin
Acknowledgment. This research was supported by the Uni-
versity of Chicago. We acknowledge the donors of the American
Chemical Society Petroleum Research Fund for support of this
research (PRF 38848-G3). This research is also supported by a
Research Innovation Award (RI1179) from Research Corporation.
Supporting Information Available: Experimental details. This
Scheme 2. Terminal Olefin Migration Catalyzed by Au(I)
Scheme 3 Proposed Catalytic Mechanism
References
(1) For selected reviews, see: (a) Hashmi, A. S. K. Gold Bull. 2004, 37,
51-65. (b) Hashmi, A. S. K. Gold Bull. 2003, 36, 3-9. (c) Dyker, G.
Angew. Chem., Int. Ed. 2000, 39, 4237-4239. Selected examples: (d)
Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405-
6406. (e) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed.
1998, 37, 1415-1418. (f) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991,
56, 3729-3731. (g) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.;
Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650-12651.
(2) For selected more recent examples, see: (a) Nieto-Oberhuber, C.; Mun˜oz,
M. P.; Bun˜uel, E.; Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M. Angew.
Chem., Int. Ed. 2004, 43, 2402-2406. (b) Arcadi, A.; Bianchi, G.;
Marinelli, F. Synthesis 2004, 610-618. (c) Mamane, V.; Gress, T.; Krause,
H.; Fu¨rstner, A. J. Am. Chem. Soc. 2004, 126, 8654-8655. (d) Sherry,
B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978-15979. (e)
Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed.
2004, 43, 5350-5352. (f) Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem.
Soc. 2004, 126, 11164-11165. (g) Zhang, L.; Kozmin, S. A. J. Am. Chem.
Soc. 2004, 126, 11806-11807. (h) Hashmi, A. S. K.; Weyrauch, J. P.;
Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391-4394. (i) Morita, N.;
Krause, N. Org. Lett. 2004, 6, 4121-4123. (j) Hashmi, A. S. K.;
Weyrauch, J. P.; Rudolph, M.; Kurpejovic´, E. Angew. Chem., Int. Ed.
2004, 43, 6545-6547. (k) Straub, B. F. Chem. Commun. 2004, 1726-
1728. (l) Fu¨rstner, A.; Hannen, P. Chem. Commun. 2004, 2546-2547.
(m) Milton, M. D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. Chem.
Commun. 2004, 2712-2713.
alkene can be mediated by gold(I) under the same conditions
(Scheme 1). The product yield is comparable to that reported
recently with a platinum-based system.6a This type of intramolecular
addition of a hydroxyl group to an alkene was suggested as a
potential step in a gold(III)-catalyzed tandem reaction previously;3a
however, this has never been demonstrated experimentally. Pre-
liminary results also indicate that acidic alcohols serve as good
nucleophiles to add intermolecularly into olefins.
While investigating these reactions, we discovered that migration
of double bonds occurred in some cases (entries 8-10, 13, and 14
in Table 2). To confirm the observation, we took 4-phenyl-1-butene
and heated it at 85 °C for 20 h in the presence of 1 mol % of
Ph3PAuOTf without any nucleophiles in toluene. Seventy-five
percent of the alkene was converted to 4-phenyl-2-butene in a 2.2:
1/E:Z ratio (Scheme 2). Further migration to the conjugated system
was not observed; the same phenomenon was also discovered with
a ruthenium-based system.10
The reaction mechanism is proposed in Scheme 3. We believe
the cationic gold(I) binds and activates alkene for a nucleophilic
addition by the phenols or carboxylic acids,11 a reaction similar to
the Wacker process catalyzed by palladium(II).12 A subsequent
proton-transfer step affords the final product and regenerates gold-
(I) catalyst. The gold catalyst also promotes migration of double
bonds, which gives rise to formation of small amounts of side
products for some substrates (Scheme 3). The mechanism of the
double bond migration mediated by gold(I) is unclear at this
moment.
(3) (a) Intramolecular addition of a hydroxyl group to an alkene was proposed
as part of a tandem reaction. See: Hashmi, A. S. K.; Schwarz, L.; Choi,
J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285-2288. (b)
Kobayashi, S.; Kakumoto, K.; Sugiura, M. Org. Lett. 2002, 4, 1319-
1322.
(4) Yao, X.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 6884-6885.
(5) (a) Larock, R. C.; Leong, W. W. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol.
4, p 297. (b) Robin, S.; Rousseau, G. Tetrahedron 1998, 54, 13681-
13736. (c) Harding, K. E.; Tinger, T. H. In ComprehensiVe Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York,
1991; Vol. 4, p 463. (d) Mulzer, J. In Organic Synthesis Highlights;
Mulzer, J., Altenbach, H. J., Braun, M., Krohn, K., Reissing, H. U., Eds.;
VCH: Weinheim, Germany, 1991; p 157. (e) Larock, R. C. SolVomer-
curation/Demercuration Reactions in Organic Synthesis; Springer-Ver-
lag: Berlin, 1986; Chapter 3.
(6) (a) Qian, H.; Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126,
9536-9537. (b) Wang, X.; Widenhoefer, R. A. Chem. Commun. 2004,
660-661. (c) Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. J. Am.
Chem. Soc. 2004, 126, 3700-3701. (d) Wang, X.; Widenhoefer, R. A.
Organometallics 2004, 23, 1649-1651.
(7) (a) Oe, Y.; Ohta, T.; Ito, Y. Chem. Commun. 2004, 1620-1621. (b) Oe,
Y.; Ohta, T.; Ito, Y. Synlett 2005, 179-181.
(8) For a recent review and selected examples, see: (a) Stahl, S. S. Angew.
Chem., Int. Ed. 2004, 43, 3400-3420. (b) Utsunomiya, M.; Kawatsura,
M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2003, 42, 5865-5868. (c) Arai,
M. A.; Kuraishi, M.; Arai, T.; Sasai, H. J. Am. Chem. Soc. 2001, 123,
2907-2908. (d) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz,
B. M. Angew. Chem., Int. Ed. 2003, 42, 2892-2895. (e) Uozumi, Y.;
Kato, K.; Hayashi, T. J. Am. Chem. Soc. 1997, 119, 5063-5064. (f)
Larock, R. C.; Hightower, T. R. J. Org. Chem. 1993, 58, 5298-5300. (g)
Hegedus, L. S.; Allen, G. F.; Bozell, J. J.; Waterman, E. L. J. Am. Chem.
Soc. 1978, 100, 5800-5807.
(9) (a) Komiya, S.; Kochi, J. K. J. Organomet. Chem. 1977, 135, 65-72. (b)
Canales, S.; Crespo, O.; Gimeno, M. C.; Jones, P. G.; Laguna, A.;
Mendizabal, F. Organomatallics 2000, 19, 4985-4994.
(10) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida, A. Angew. Chem., Int.
Ed. 2002, 41, 4732-4734.
(11) For selected gold-olefin complexes, see: (a) Huettel, R.; Reinheimer, H.;
Dietl, H. Chem. Ber. 1966, 99, 2778-2781. (b) Da´vila, R. M.; Staples,
R. J.; Fackler, J. P., Jr. Organometallics 1994, 13, 418-420. (c) Cinellu,
M. A.; Minghetti, G.; Stoccoro, S.; Zucca, A.; Manassero, M. Chem.
Commun. 2004, 1618-1619.
(12) For examples for the Wacker process, see: Ba¨ckvall, J. E.; Åkermark,
B.; Ljunggren, S. O. J. Am. Chem. Soc. 1979, 101, 2411-2416 and
references therein.
In summary, we report here the gold(I)-catalyzed intermolecular
addition of phenols and carboxylic acids to olefins. The reaction is
simple and runs under relatively mild conditions. To our knowledge,
this is the first example of a gold(I)-mediated activation of inert
alkenes toward nucleophilic addition. Experimental results support
a proposed mechanism with the gold(I) directly activating the olefin.
This study may open a new direction for alkene functionalization.
JA050392F
9
J. AM. CHEM. SOC. VOL. 127, NO. 19, 2005 6967