Running title
Chin. J. Chem.
Palladium-Catalyzed Oxidative Direct ortho-C-H Acylation of Arenes
with Aldehydes under Aqueous Conditions. Eur. J. Org. Chem. 2015,
7919-7925; (d) Yin, Z.; Jiang, X.; Sun, P. Palladium-Catalyzed Direct or-
tho Alkoxylation of Aromatic Azo Compounds with Alcohols. J. Org.
Chem. 2013, 78, 10002–10007; (e) Zhu, C.; Feng, C.; Yamane, M. Pd/Cu
Cooperative Catalysis: an Efficient Synthesis of (3-Isoindazolyl) Allenes
via Cross-Coupling of 2-Alkynyl Azobenzenes and Terminal Alkynes.
Chem. Commun. 2017, 53, 2606-2609; (f) Mao, Y.-J.; Luo, G.; Hao, H.-Y.;
Xu, Z.-Y.; Lou, S.-J.; Xu, D.-Q. Anion Ligand Promoted Selective C-F Bond
Reductive Elimination Enables C(sp2)-H Fluorination. Chem. Commun.
2019, 55, 14458-14461; (g) Geng, X.; Wang, C. Rhenium-Catalyzed [4 +
1] Annulation of Azobenzenes and Aldehydes via Isolable Cyclic Rhe-
nium (I) Complexes. Org. Lett. 2015, 17, 2434–2437.
Bis(neopentylglycolato)diboron. Org. Lett. 2019, 21, 9812–9817; (g) Li,
Y.; Wang, M.; Jiang, X. Straightforward Sulfonamidation via
Metabisulfite-Mediated Cross Coupling of Nitroarenes and Boronic
Acids under Transition-Metal-Free Conditions. Chin. J. Chem. 2020, 38,
1521-1525; (h) Zuman P.; Shah, B. Addition, Reduction, and Oxidation
Reactions of Nitrosobenzene. Chem. Rev. 1994, 94, 1621–1641.
[7] (a) Feng, C.; Liu, Y.; Peng, S.; Shuai, Q.; Deng, G.-J.; Li, C.-J. Rutheni-
um-catalyzed Tertiary Amine Formation from Nitroarenes and Alco-
hols. Org. Lett., 2010, 12, 4888–4891; (b) Liu, Y.; Chen, W.; Feng, C.;
Deng, G.-J. Ruthenium-Catalyzed One-Pot Aromatic Secondary Amine
Formation from Nitroarenes and Alcohols. Chem. Asian J. 2011, 6,
1142-1146; (c) Xie, Y.; Liu, S.; Liu, Y.; Wen, Y.; Deng, G.-J. Palladi-
um-Catalyzed One-Pot Diarylamine Formation from Nitroarenes and
Cyclohexanones. Org. Lett. 2012, 14, 1692–1695; (d) Wu, M.; Hu, X.;
Liu, J.; Liao, Y.; Deng, G.-J. Iron-Catalyzed 2-Arylbenzoxazole Formation
from o-Nitrophenols and Benzylic Alcohols. Org. Lett. 2012, 14,
2722–2725; (e) Wang, H.; Cao, X.; Xiao, F.; Liu, S.; Deng, G.-J.
Iron-Catalyzed One-Pot 2,3-Diarylquinazolinone Formation from
2-Nitrobenzamides and Alcohols. Org. Lett. 2013, 15, 4900–4903.
[8] (a) Naya, S.; Niwa, T.; Kume, T.; Tada, H. Visible-Light-Induced Electron
Transport from Small to Large Nanoparticles in Bimodal Gold Nanopar-
ticle-Loaded Titanium(IV) Oxide. Angew. Chem. Int. Ed. 2014, 53,
7305-7309; (b) Liu, X.; Li, H.-Q.; Ye, l.; Liu, Y.-M.; He, H.-Y.; Cao, Y.
Gold-Catalyzed Direct Hydrogenative Coupling of Nitroarenes to Syn-
thesize Aromatic Azo Compounds. Angew. Chem. Int. Ed. 2014, 53,
7624-7628; (c) Liu, W.; Zhang, L.; Yan, W.; Liu, X.; Yang, X.; Miao, S.;
Wang, W.; Wang, A.; Zhang, Tao. Single-Atom Dispersed Co-N-C Cata-
lyst: Structure Identification and Performance for Hydrogenative Cou-
pling of Nitroarenes. Chem. Sci. 2016, 7, 5758-5764; (d) Zeynizadeh, B.;
Faraji, F. Immobilized Antimony Species on Magnetite: A Novel and
Highly Efficient Magnetically Reusable Nanocatalyst for Direct and
Gram-Scale Reductive-Coupling of Nitroarenes to Azoarenes. RSC Adv.
2019, 9, 13112-13121; (e) Nozawa-Kumada, K.; Abe, E.; Ito, S.; Shigeno,
M.; Kondo, Y. Super Electron Donor-Mediated Reductive Transfor-
mation of Nitrobenzenes: a Novel Strategy to Synthesize Azobenzenes
and Phenazines. Org. Biomol. Chem. 2018, 16, 3095-3098; (f) Grirrane,
A.; Corma, A.; Garcia, H. Gold-Catalyzed Synthesis of Aromatic Azo
Compounds from Anilines and Nitroaromatics. Science. 2008, 322,
1661-1664; (g) Hammerich, O. Reduction of Nitro Compounds and Re-
lated Substrates, in: Organic Electrochemistry. CRC Press, Boca Raton.
2015; (h) Barba, F.; Batanero, B. Heterocyclic Compounds, in: Organic
Electrochemistry, CRC Press, Boca Raton. 2015.
[3] (a) Wang, J.; Wu, B.; Li, S.; Sinawang, G.; Wang, X.; He, Y. Synthesis and
Characterization of Photoprocessable Lignin-Based Azo Polymer. ACS
Sustainable Chem. Eng. 2016, 4, 4036–4042; (b) Barbero, M.;
Cadamuro, S.; Dughera, S.; Giaveno, C. Reactions of Dry Arenediazo-
nium o-Benzenedisulfonimides with Triorganoindium Compounds. Eur.
J. Org. Chem. 2006, 2006, 4884-4890; (c) He, Y.; He, W.; Wei, R.; Chen,
Z.; Wang, X. Synthesizing Amphiphilic Block Copolymers Through
Macromolecular Azo-Coupling Reaction. Chem. Commun. 2012, 48,
1036-1038; (d) Tomasulo, M.; Raymo, F. M. Colorimetric Detection of
Cyanide with a Chromogenic Oxazine. Org. Lett. 2005, 7, 4633–4636;
(e) Guo, M.; Xue, W.; Guan, M.; Sun, J.; Yin, G. New Azobenzene Dye
Colorimetric and Ratiometric Chemosensors for Mercury(II) Ion. Chin. J.
Chem. 2009, 27, 1772-1776.
[4] (a) Fu, F.; He, S.; Yang, S.; Wang, C.; Zhang, X.; Li, P.; Sheng, H.; Zhu, M.;
Two Tandem Multicomponent Reactions for The Synthesis of Se-
quence-Defined Polymers. Sci. China Chem. 2015, 58, 1532–1536; (b)
Sarkar,
P.;
Mukhopadhyay,
C.
First
Use
of
p-Tert-Butylcalix[4]Arene-Tetra-O-Acetate as
a
Nanoreactor Having
Tunable Selectivity Towards Cross Azo-compounds by Trapping Silver
Ions. Green Chem., 2016, 18, 442-451; (c) Paris, E.; Bigi, F.; Cauzzi, D.;
Maggi, R. Maestri, G. Oxidative Dimerization of Anilines with Hetero-
geneous Sulfonic Acid Catalysts. Green Chem. 2018, 20, 382-386; (d)
Cai, S.; Rong, H.; Yu, X.; Liu, X.; Wang, D.; He, W.; Li, Y. Room Temper-
ature Activation of Oxygen by Monodispersed Metal Nanoparticles:
Oxidative Dehydrogenative Coupling of Anilines for Azobenzene Syn-
theses. ACS Catal. 2013, 3, 478–486; (e) Zhu, Y.; Shi, Y. Cu(I)-catalyzed
Oxidative Coupling of Anilines to Azo Compounds and Hydrazines with
Diaziridinone Under Mild Conditions. Org. Lett. 2013, 15, 1942–1945;
(f) Wang, L.; Ishida, A.; Hashidoko, Y.; Hashimoto, M. Dehydrogenation
of the NH−NH Bond Triggered by Potassium tert-Butoxide in Liquid
Ammonia. Angew. Chem. Int. Ed. 2017, 56, 870-873; (g) Zhang, C.; Jiao,
N. Copper-Catalyzed Aerobic Oxidative Dehydrogenative Coupling of
Anilines Leading to Aromatic Azo Compounds using Dioxygen as an
Oxidant. Angew. Chem. Int. Ed. 2010, 49, 6174-6177.
[9] Guo, X.; Hao, C.; Jin, G.; Zhu, H.-Y.; Guo, X.-Y. Copper Nanoparticles on
Graphene Support: An Efficient Photocatalyst for Coupling of Nitroar-
omatics in Visible Light. Angew. Chem. Int. Ed. 2014, 53, 1973-1977.
[10] (a) Kim, Y.; Li, C.-J. Perspectives on Green Synthesis and Catalysis.
Green Synth. Catal. 2020, 1, 1-11; (b) Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye,
K.; Chen, F.-E. Carbon Dioxide Cycle via Electrocatalysis:
Electrochemical Carboxylation of CO2 and Decarboxylative
Functionalization of Carboxylic Acids. Green Synth. Catal. 2021, 2,
19-26; (c) Chen, N.; Xu, H.-C. Electrochemical Generation of
Nitrogen-Centered Radicals for Organic Synthesis, Green Synth. Catal.
2021, 2, 165-178; (d) Wu, Y.; Chen, J.-Y.; Liao, H.-R.; Shu, X.-R.; Duan,
L.-L.; Yang, X.-F.; He, W.-M. Electrochemical Transient Iodination and
Coupling for Selenylated 4-Anilinocoumarin Synthesis, Green Synth.
Catal. 2021, 2, 233-236.
[5] (a) Sahoo, M. K.; Saravanakumar, K.; Jaiswal, G.; Balaraman, E. Pho-
tocatalysis Enabling Acceptorless Dehydrogenation of Diaryl Hydra-
zines at Room Temperature. ACS Catal. 2018, 8, 7727–7733; (b) Du,
K.-S.; Huang, J.-M. Electrochemical Dehydrogenation of Hydrazines to
Azo Compounds. Green Chem. 2019, 21, 1680-1685.
[6] (a) Li, S.; Wang, F.; Liu, Y.; Cao Y. Highly Chemoselective Reduction of
Nitroarenes Using a Titania-Supported Platinum-Nanoparticle Catalyst
under a CO Atmosphere. Chin. J. Chem. 2017, 35, 591-595; (b) Yan, Z.;
Xie, X.; Song, Q.; Ma, F.; Sui, X.; Huo, Z.; Ma, M. Tandem Selective Re-
duction of Nitroarenes Catalyzed by Palladium Nanoclusters. Green
Chem. 2020, 22, 1301-1307; (c) Gao, G.; Tao, Y.; Jiang, J. Environmen-
tally Benign and Selective Reduction of Nitroarenes with Fe in Pressur-
ized CO2-H2O Medium. Green Chem. 2008, 10, 439-441; (d) Roy, S.
Photocatalytic Materials for Reduction of Nitroarenes and Nitrates. J.
Phys. Chem. C. 2020, 124, 28345–28358; (e) Wu, J.; Darcel, C.
Iron-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alco-
hols: Synthesis of Imines and Aza Heterocycles. J. Org. Chem. 2021, 86,
1023–1036; (f) Hosoya, H.; Castro, I.; Sultan, L. C. M.; Nakajima, Y.;
Ohmura, T.; Sato, K.; Tsurugi, H.; Suginome, M.; Mashima, K.
[11] (a) Sun, X.; Zhu, Q.; Hu, J.; Kang, X.; Ma, J.; Liu, H.; Han, B. Synthetic
Upcycling
of
Ppolyacrylates
Through
Organocatalyzed
Post-Polymerization Modification. Chem. Sci. 2017, 8, 5669-5674.
[12] Won, S.-k.; Kim, W.-j.; Kim, H.-b. Electro Organic Synthesis Utilizing Mg
Electrodes (II)-Novel Synthesis of Symmetric Azobenzenes From Nitro-
benzenes. Bull. Korean Chem. Soc. 2006, 27, 195-196.
[13] Zhang, Y.-F.; Mellah, M. Convenient Eelectrocatalytic Synthesis of Az-
obenzenes from Nitroaromatic Derivatives using SmI2. ACS Catal. 2017,
7, 8480–8486.
4′4′-Bipyridyl-Catalyzed
Reduction
of
Nitroarenes
by
Chin. J. Chem. 2021, 39, XXX-XXX
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH