Chemistry Letters 2000
1333
3
4
I. W. C. E. Arends, R. A. Sheldon, M. Wallau, and U. Schuchardt,
Angew. Chem., Int. Ed. Engl., 36, 1144 (1997) and references therein.
C. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H.
A. Hristov, and A. F. Lee, J. Am. Chem. Soc., 120, 8380 (1998).
T. Kobayashi, T. Hayashi, and M. Tanaka, Chem. Lett., 1998, 763.
K. Wada, M. Bundo, D. Nakabayashi, N. Itayama, T. Kondo, and T.
Mitsudo, Chem. Lett., 2000, 628.
was detected by NMR.
The materials in the present work include only a specific
titanium species. The 29Si-NMR peaks of 5b and 5c in the T-
silicon region were very similar to those of 1b and 1c, respec-
tively, although broadening was observed (Figure 1). In addi-
tion, no 29Si-peaks were found in the region of –50 to –60 ppm1
even after the treatment with methanol followed by the column
chromatography to remove the Pt catalyst, indicating the
absence of silanols formed by cleavage of the Ti–O–Si bonds.
The UV spectra of 5b and 5c displayed a sharp absorption band
at 210 nm, characteristic of a tetrahedrally coordinated,
monomeric titanium species,2b almost identical to the case with
1b and 1c (λmax = 210 nm). Therefore, the local structure
around the titanium atoms of 5b or 5c is estimated to be very
similar to those of 1b or 1c. These results suggest the structures
5
6
7
8
H. C. L. Abbenhuis, H. W. G. van Herwijnen, and R. A. van Santen,
Chem. Commun., 1996, 1941.
2c: A disilanol (c-C6H11)7Si7O10(SiMePhCH=CH2)(OH)2 has been
prepared from [PPh3Me]+[(c-C6H11)7Si7O12H2]– (F. J. Feher and S. H.
Phillips, J. Organomet. Chem., 521, 401 (1996)). Alternatively, to a
solution of 3 (10.5 g, 12.0 mmol) and triethylamine (5.0 cm3, 36
mmol) in THF (70 cm3), allylchlorodimethylsilane (1.1 cm3, 7.2
mmol) in THF (30 cm3) was dropwise added and stirred at room tem-
perature for 18 h. Filtration followed by evaporation leave a white
solid. This was extracted with pentane (100 cm3) to give a clear fil-
trate and a white solid. From the pentane-insoluble solid, 4.8 mmol
of unreacted 3 was recovered, and from the filtrate the solvent was
evaporated. The product was obtained by recrystallization by slow
diffusion of acetonitrile into a benzene solution. Yield 98%. mp
166.0–168.0 °C; 1H NMR (300 MHz, CDCl3, 25 °C) δ 5.83 (ddt, 3J
3
= 17.1, 9.7, 8.1 Hz, 1H, SiCH2CH=CH2), 4.91 (d, J = 17.1 Hz, 1H,
trans-CH2CH=CH2), 4.87 (d, 3J = 9.7 Hz, 1H, cis-CH2CH=CH2),
4.01 (br, 2H, SiOH), 1.75–1.50 (br m, 58H, CH2 of Cy and
SiCH2CH=CH2), 1.06–0.92 (br m, 7H, CH of Cy), 0.16 (s, 6H,
Si(CH3)2); 13C{1H} NMR (75 MHz, CDCl3, 25 °C) δ 134.35
(SiCH2CH=CH2), 113.71 (SiCH2CH=CH2), 27.57, 27.45, 27.40,
27.34, 27.26, 27.24, 27.09, 27.02, 27.00, 26.88, 26.84 (CH2 of Cy),
25.89 (SiCH2CH=CH2), 23.69, 22.82, 22.46, 22.27, 22.20 (1:2:2:1:1
for CH of Cy), –0.50 (Si(CH3)2); 29Si{1H} NMR (76 MHz, CDCl3,
0.2 M Cr(acac)3, 25 °C) δ 7.73, –56.62, −65.57, −66.43, −67.36
(1:2:2:1:2). Anal. Calcd for C40H76O12Si8 (973.73): C, 49.34; H,
7.87%. Found C, 49.36; H, 7.64%.
9
1b: To a solution of 2b (768 mg, 0.8 mmol) in dry benzene (30 cm3),
tetrakis(diethylamino)titanium (135 mg, 0.4 mmol) in dry benzene
(15 cm3) was dropwise added and stirred at room temperature for 6 h.
After the solvent was evaporated, the resulting off-white solid was
extracted with hexane (30 cm3). Filtration by using a 0.45 µm PTFE
filter gave a clear solution. After evaporation, 1b was obtained by
recrystallization by slow diffusion of acetone into a benzene solution.
Yield 68%. mp 267.5–268.0 °C; 1H NMR (300 MHz, CDCl3, 25 °C)
3
3
δ 6.16 (dd, J = 20.2, 14.9 Hz, 2H, SiCH=CH2), 5.93 (dd, J = 14.9
Hz, 2J = 4.0 Hz, 2H, cis-SiCH=CH2), 5.74 (dd, 3J = 20.2 Hz, 2J = 4.0
Hz, 2H, trans-SiCH=CH2), 1.89–1.43 (br m, 112 H, CH2 of Cy),
1.02–0.85 (br m, 14 H, CH of Cy), 0.24 (s, 6H, Si(CH3)2), 0.23 (s, 6
H, Si(CH3)2); 13C{1H} NMR (75 MHz, CDCl3, 25 °C) δ 139.37
(SiCH=CH2), 131.58 (SiCH=CH2), 27.76, 27.61, 27.50, 27.36, 27.33,
27.16, 27.11, 27.06, 26.96, 26.93 (CH2 of Cy), 24.30, 23.46, 23.12,
23.08, 23.00, 22.44, 22.33 (1:1:1:1:1:1:1 for CH of Cy), 0.45, 0.36
(Si(CH3)2); 29Si{1H} NMR (76 MHz, CDCl3, 0.2 M Cr(acac)3, 25
°C) δ –2.12, –65.24, –65.76, –66.11, –67.12, –68.05, –68.15, –68.28
(1:1:1:1:1:1:1:1). MS (FAB+) m/z 1892 (7) [M – C5H10]+, 861 (100).
Anal. Calcd for C78H144O24Si16Ti (1963.25): C, 47.72; H, 7.39%.
Found C, 47.28; H, 7.76%.
of oligomers exemplified in Figure 2.
In conclusion, hydrosilylation between octakis(hydrido-
silsesquioxane) and new titanium-bridged silsesquioxanes with
olefinic groups afforded novel oligomeric materials. These
oligomers are estimated to possess a titanium species very simi-
lar to that in 1b or 1c. They would be appropriate precursors of
organic–inorganic hybrid materials for the catalysts with
titanosilicate-like active sites,3 or porous oxides with uniformly
controlled micropores.12
10 1c: Yield 62%. mp 288.0–289.0 °C; 1H NMR (300 MHz, CDCl3, 25
°C) δ 5.80 (ddt, 3J = 17.1, 9.7, 8.1 Hz, 2H, SiCH2CH=CH2), 4.85 (d,
3J = 17.1 Hz, 2H, trans-SiCH2CH=CH2), 4.81 (d, 3J = 9.7 Hz, 2H,
cis-SiCH2CH=CH2), 1.86–1.49 (br m, 116H, CH2 of Cy and
SiCH2CH=CH2), 0.96–0.90 (br m, 14H, CH of Cy), 0.18 (s, 6H,
Si(CH3)2), 0.17 (s, 6H, Si(CH3)2); 13C{1H} NMR (75 MHz, CDCl3,
25 °C) δ 134.69 (SiCH2CH=CH2), 113.04 (SiCH2CH=CH2), 27.78,
27.72, 27.59, 27.48, 27.48, 27.38, 27.34, 27.30, 27.17, 27.09, 27.04,
26.94, 26.90, 26.87 (CH2 of Cy), 26.11 (SiCH2CH=CH2), 24.26,
23.44, 23.14, 23.05, 23.01, 22.40, 22.29 (1:1:1:1:1:1:1 for CH of Cy),
–0.21 (Si(CH3)2); 29Si{1H} NMR (76 MHz, CDCl3, 0.2 M Cr(acac)3,
25 °C) δ 6.53, –65.25, –65.76, –66.16, –67.14, –68.08, –68.27
(1:1:1:1:1:1:2). MS (FAB+) m/z 1948 (12) [M – C3H6]+, 1919 (13),
861 (100). Anal. Calcd for C80H148O24Si16Ti (1991.30): C, 48.25; H,
7.49%. Found C, 47.44; H, 7.39%.
This work is supported in part by a Grant-in-Aid for
Scientific Research (No. 11650807) from the Ministry of
Education, Science, Sports, and Culture. The authors are grate-
ful to Dr. S.-W. Zhang at Osaka University for assistance in
GPC analyses, and Mr. Y. Hisamoto at Kyoto University for his
kind instruction in FAB mass measurements.
References and Notes
1
2
F. J. Feher and T. A. Budzichowski, Polyhedron, 14, 3239 (1995).
a) M. Crocker, R. H. M. Herold, and A. G. Orpen, Chem. Commun.,
1997, 2411. b) M. Crocker, R. H. M. Herold, A. G. Orpen, and M.
T. Overgaag, J. Chem. Soc., Dalton Trans., 1999, 3791. c) H. C. L.
Abbenhuis, S. Krijnen, and R. A. van Santen, Chem. Commun.,
1997, 331. d) S. Krijnen, H. C. L. Abbenhuis, R. W. J. M. Hanssen,
J. H. C. van Hooff, and R. A. van Santen, Angew. Chem., Int. Ed.,
37, 356 (1998). e) T. Maschmeyer, M. C. Klunduk, C. M. Martin,
D. S. Shephard, J. M. Thomas, and B. F. G. Johnson, Chem.
Commun., 1997, 1847. f) M. C. Klunduk, T. Maschmeyer, J. M.
Thomas, and B. F. G. Johnson, Chem. Eur. J., 5, 1481 (1999).
11 P. A. Agaskar, Inorg. Chem., 30, 2707 (1991).
12 a) K. Wada, M. Nakashita, M. Bundo, K. Ito, T. Kondo, and T.
Mitsudo, Chem. Lett., 1998, 659. b) N. Maxim, H. C. L. Abbenhuis,
P. J. Stobbelaar, B. L. Mojet, and R. A. van Santen, Phys. Chem.
Chem. Phys., 1, 4473 (1999).