E. Fillion, D. Fishlock / Tetrahedron 65 (2009) 6682–6695
6695
7. Fillion, E.; Fishlock, D. J. Am. Chem. Soc. 2005, 127, 13144–13145.
8. For a review of the use of Meldrum acids in the synthesis of natural products,
see: Ivanov, A. S. Chem. Soc. Rev. 2008, 37, 789–811.
9. Davidson, D.; Bernhard, S. A. J. Am. Chem. Soc. 1948, 70, 3426–3428.
10. Pihlaja, K.; Seilo, M. Acta Chem. Scand. 1968, 22, 3053–3062.
11. Meldrum stated that the treatment of 2,2-dimethyl-1,3-dioxin-4,6-dione with
excess of alkali ‘was found to cause disruption into acetone and malonic acid’.
However, no experimental data was provided, see: Meldrum, A. N. J. Chem. Soc.
1908, 93, 598–601.
reactions was determined to be a reversible, unimolecular loss of acetone to
provide the reactive intermediate. It was also concluded that since the de-
composition of 2,2,6-trimethyl-4H-1,3-dioxin-4-one is reversible, acetone is
a competitor with other trapping reagents.
39. Similar inhibition by the 1-indanone product was postulated but not experi-
mentally demonstrated.
40. The stability of acyl ketenes, generated through retro hetero-Diels–Alder of
Meldrum’s acids, is enhanced by increasing the size of the substituent at the 5-
position, see Ref. 18.
12. Pihlaja, K.; Seilo, M. Acta Chem. Scand. 1969, 23, 3003–3010.
13. Pihlaja, K.; Seilo, M. Finn. Chem. Lett. 1976, 123–124.
41. Inhibition of Yb(III)[C(SO2CF3)3]3 by Friedel–Crafts acylation product, see:
Barrett, A. G. M.; Bouloc, N.; Braddock, D. C.; Chadwick, D.; Henderson, D. A.
Synlett 2002, 1653–1656.
14. Zav’yalov, S. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1961, 2185–2189.
15. Bihlmayer, G. A.; Schuster, P.; Polansky, O. E. Monatsh. Chem. 1966, 97, 145–149.
16. Ziegler, E.; Junek, H.; Kroboth, H. Monatsh. Chem. 1976, 107, 317–324.
17. Matoba, K.; Yamazaki, T. Chem. Pharm. Bull. 1983, 31, 2955–2956.
18. Sato, M.; Ban, H.; Kaneko, C. Tetrahedron Lett. 1997, 38, 6689–6692.
19. For a review, see: Sato, M.; Iwamoto, K. J. Synth. Org. Chem. Jpn. 1999, 57, 76–83.
20. The competitive reaction of an equimolar mixture of t-BuOH and EtOH with
Meldrum’s acid at reflux furnished a 1:3.8 ratio of the corresponding esters,
see: (a) Tararov, V. I.; Korostylev, A.; Ko¨nig, G.; Bo¨rner, A. Synth. Commun. 2006,
36, 187–191; The competitive reaction of an equimolar mixture of t-BuOH and
n-pentanol with acetylketene revealed a 8.2:1 selectivity favoring the less
sterically demanding 1ꢀ alcohol, see: (b) Birney, D. M.; Xu, X.; Ham, S.; Huang,
X. J. Org. Chem. 1997, 62, 7114–7120.
42. Examples of tautomerization of 1,3-dicarbonyl compounds by lanthanide tri-
´
´
flates, see: (a) Fillion, E.; Carret, S.; Mercier, L. G.; Trepanier, V. E. Org. Lett. 2008,
10, 437–440; (b) Zhang, J.; Blazecka, P. G.; Angell, P.; Lovdahl, M.; Curran, T. T.
Tetrahedron 2005, 61, 7807–7813; (c) Yang, D.; Li, J.-H.; Gao, Q.; Yan, Y.-L. Org. Lett.
2003, 5, 2869–2871; (d) Yang, D.; Ye, X.-Y.; Xu, M.; Pang, K.-W.; Cheung, K.-K.
J. Am. Chem. Soc. 2000, 122, 1658–1663; (e) Yang, D.; Ye, X.-Y.; Xu, M. J. Am. Chem.
Soc. 1999, 121, 5579–5580.
43. Ketene 35 was prepared independently from 2-phenyl propionyl chloride and
triethylamine, and its 1H and 13C NMR data acquired, see: Baigrie, L. M.; Seiklay,
H. R.; Tidwell, T. T. J. Am. Chem. Soc. 1985, 107, 5391–5396.
44. For mechanistic studies on Bi(OTf)3- and Bi(NTf2)3-catalyzed Friedel–Crafts
´
acylation with acid chlorides and anhydrides, see: (a) Picot, A.; Repichet, S.; Le
21. Hydrolysis by refluxing Meldrum’s acid derivatives in H2O/DMF, see: (a) Fillion,
E.; Wilsily, A. J. Am. Chem. Soc. 2006, 128, 2774–2775; (b) Kno¨pfel, T. F.; Carreira,
E. M. J. Am. Chem. Soc. 2003, 125, 6054–6055; H2O/pyridine, see: (c) Kadam, A.
J.; Desai, U. V.; Mane, R. B. J. Labelled Compd. Radiopharm. 1999, 42, 835–842;
H2O/2-pentanone, see: (d) Trost, B. M.; Brennan, M. K. Org. Lett. 2007, 9, 3961–
3964; Alcohols as solvent, see: (e) von Gassmann, P.; Hagmann, L.; Keller-
Schierlein, W.; Samain, D. Helv. Chim. Acta 1984, 67, 696–705; (f) Brooks, D. W.;
de Lee, N. C.; Peevey, R. Tetrahedron Lett. 1984, 25, 4623–4626; (g) Chorev, M.;
Rubini, E.; Gilon, C.; Wormser, U.; Selinger, Z. J. Med. Chem. 1983, 26, 129–135;
Reaction with phenols, see: (h) Junek, H.; Ziegler, E.; Herzog, U.; Kroboth, H.
Synthesis 1976, 332–334.
22. Formation of amide under neutral conditions has been also reported, see: (a)
Kno¨pfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127,
9682–9683; (b) Watanabe, T.; Kno¨pfel, T. F.; Carreira, E. M. Org. Lett. 2003, 5,
4557–4558; (c) Carotti, A.; Carrieri, A.; Cellamare, S.; Fanizzi, F. P.; Gavuzzo, E.;
Mazza, F. Biopolymers 2001, 60, 322–332.
Roux, C.; Dubac, J.; Roques, N. J. Fluorine Chem. 2002, 116, 129–134; (b) Re´pichet,
S.; Le Roux, C.; Dubac, J.; Desmurs, J.-R. Eur. J. Org. Chem. 1998, 2743–2746.
45. At fixed time intervals, aliquots were drawn from the reaction mixture and
immediately quenched in a triethylamine/methylene chloride solution. These
samples were then filtered through plugs of silica, and then injected into a GC
equipped with a flame ionization detector. The progression of the reaction was
judged by the simple percent conversion as determined by the direct compar-
ison of integration areas of the starting material with the product. Since no in-
ternal standard was used in the analysis, percent yields were not determined. All
other reaction and analysis conditions were identical between each Lewis acid.
46. For a large-scale synthesis, the removal of the acetone by-product by reduced
pressure could be expected to accelerate the reaction, but this was not explored
in this study.
47. Mg(NTf2)2 was prepared according to: Earle, M. J.; Hakala, U.; McAuley, B. J.;
Nieuwenhuyzen, M.; Ramani, A.; Seddon, K. R. Chem. Commun. 2004, 1368–
1369.
23. For reviews, see: (a) McNab, H. Aldrichimica Acta 2004, 37, 19–26; (b) Gaber, A.
E. M.; McNab, H. Synthesis 2001, 2059–2074.
48. Mg(OTf)2 and Mg(NTf2)2 has been shown to be effective catalysts for the
Friedel–Crafts acylation of 42, see Ref. 4a.
24. Ott, E. Justus Liebigs Ann. Chem. 1913, 401, 159–177.
49. Mathieu, B.; Ghosez, L. Tetrahedron Lett. 1997, 38, 5497–5500.
50. For examples of Friedel–Crafts acylation catalyzed by lanthanide bis(tri-
fluoromethanesulfonate)amides, see: (a) Kawamura, M.; Cui, D.-M.; Shimada, S.
Tetrahedron 2006, 62, 9201–9209; (b) Mikami, K.; Kotera, O.; Motoyama, Y.;
Sakaguchi, H.; Maruta, M. Synlett 1996, 171–172.
51. The Brønsted acidity of TfOH is superior to that of Tf2NH, see: (a) Guthrie, J. P.;
Can, J. Chem. 1978, 56, 2342–2354; (b) Foropoulos, J., Jr.; DesMarteau, D. D.
Inorg. Chem. 1984, 23, 3720–3723.
25. Brown, R. F. C.; Eastwood, F. W.; Harrington, K. J. Aust. J. Chem.1974, 27, 2373–2384.
26. Baxter, G. J.; Brown, R. F. C.; Eastwood, F. W.; Gatehouse, B. M.; Nesbit, M. C.
Aust. J. Chem. 1978, 31, 1757–1767.
27. For ab initio studies on the formation of ketenes via pyrolysis of Meldrum’s acid
derivatives, see: (a) George, L.; Wong, M. W.; Wentrup, C. Org. Biomol. Chem.
2007, 5, 1437–1441; (b) Matsui, H.; Zu¨ckerman, E. J.; Katagiri, N.; Kaneko, C.;
Ham, S.; Birney, D. M. J. Phys. Chem. A 1997, 101, 3936–3941.
28. Chopra, D.; Zhurov, V. V.; Zhurova, E. A.; Pinkerton, A. A. J. Org. Chem. 2009, 74,
2389–2395.
29. For the complexation of Me2AlCl with oximinosulfonate Meldrum’s acid de-
rivatives, see: Renslo, A. R.; Danheiser, R. L. J. Org. Chem. 1998, 63, 7840–7850.
30. (a) Couturier, D.; Rigo, B. J. Heterocycl. Chem. 1999, 36, 1073–1075; (b) Rigo, B.;
Fasseur, D.; Cauliez, P.; Couturier, D. Tetrahedron Lett. 1989, 30, 3073–3076.
52. Dumeunier, R.; Marko´ , I. E. Tetrahedron Lett. 2004, 45, 825–829.
53. (a) Balaban, T. S.; Unuta, C.; Gheorghiu, M. O.; Balaban, A. T. Tetrahedron Lett.
1985, 26, 4669–4672; (b) Brown, H. C.; Kanner, B. J. Am. Chem. Soc. 1966, 88,
986–992; (c) Brown, H. C.; Kanner, B. J. Am. Chem. Soc. 1953, 75, 3865.
54. For a discussion on the formation of protic acid from Yb(OTf)3 and H2O, see: (a)
Kobayashi, S. Synlett 1994, 689–701; See also: (b) Rosenfeld, D. C.; Shekhar, S.;
Takemiya, A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179–4182; For
the generation of protic acid from Sc(OTf)3 and MeOH, see: (c) Castellani, C. S.;
Perotti, A.; Scrivanti, M.; Vidari, G. Tetrahedron 2000, 56, 8161–8166; (d) Cas-
tellani, C. S.; Carugo, O.; Leopizzi, C.; Perotti, A.; Invernizzi, A. G.; Vidari, G.
Tetrahedron 1996, 52, 11045–11052.
31. For a review on
a-oxoketenes, see: Wentrup, C.; Heilmayer, W.; Kollenz, G.
Synthesis 1994, 1219–1248.
32. Substrate 22 should be slightly more nucleophilic than 24. For comparison,
toluene reacts 1.8 times faster than tert-butyl benzene in nitration reactions
with Bu4NNO3–TFAA in CH3NO2. In addition, attack at the ortho position is
hindered as the para/ortho ratio is 0.6 for toluene and 6.7 for tert-butyl ben-
zene, see: Masci, B. Tetrahedron 1989, 45, 2719–2730.
55. Quantitative evaluation of Lewis acid strength by 13C NMR, see: (a) Farcasiu, D.;
Lukinskas, P.; Ghenciu, A.; Martin, R. J. Mol. Catal. A: Chem. 1999, 137, 213–221;
(b) Farcasiu, D.; Stan, M. J. Chem. Soc., Perkin Trans. 2 1998, 1219–1222.
56. NMR studies of lanthanide triflimidates, see: Barbier-Beaudry, D.; Dormond, A.;
Duris, F.; Bernard, J. M.; Desmurs, J. R. J. Fluorine Chem. 2003, 121, 233–238.
57. It was observed that dried Sc(OTf)3, dried followed published procedures, but
rapidly weighed outside the dry-box readily absorbed water. Therefore, it
seemed essential to avoid exposure of the catalysts to moisture and preferably
weigh it under an inert and dry atmosphere. Despite these precautions, the
results described in this manuscript (see Scheme 4) suggest that a non-negli-
gible amount of H2O remains associated with Sc(OTf)3 despite the extreme
measures taken to dry the catalyst.
33. For a review on gem-disubstituted effect, see: Jung, M. E.; Piizzi, G. Chem. Rev.
2005, 105, 1735–1766.
34. Intramolecular arylation of ketenium ions, see: (a) Zhang, L.; Kozmin, S. A. J. Am.
Chem. Soc. 2004,126,10204–10205; Intramolecular Friedel–Crafts acylationwith
chromium–carbene complex-derived ketenes catalyzed by ZnCl2, see: (b) Bueno,
A. B.; Moser, W. H.; Hegedus, L. S. J. Org. Chem. 1998, 63, 1462–1466.
35. The plot of the log(data) versus time was linear.
36. Mayr, H.; Kempf, H.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66–77.
37. March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 4th
ed.; Wiley-Interscience: New York, NY, 1992; pp 585–586.
38. Related studies of the thermal decomposition of 2,2,6-trimethyl-4H-1,3-dioxin-
4-one have been reported with both kinetics experiments, see: (a) Clemens, R. J.
J. Am. Chem. Soc. 1989, 111, 2186–2193; and ab initio calculations, see: (b) Birney,
D. M.; Wagenseller, P. E. J. Am. Chem. Soc. 1994, 116, 6262–6270; This compound
decomposes to acetylketene and reacts just as described for acyl ketenes. These
dioxinones do not require the initial enolization step, but still involve a retro
hetero-Diels–Alder and acylation step. The rate-determining step in these
58. For Yb(OTf)3-catalyzed aldol reactions with formaldehyde in water, the for-
mation of TfOH was negligible and found not to be an active catalytic species,
see: Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590–3596.
59. Crooy, P.; De Neys, R.; Eliaers, J.; Livegns, R.; Simonet, G.; Vandevelde, J. Bull.
Soc. Chim. Belg. 1997, 86, 995–1002.
60. Chen, B.-C.; Lue, P. Org. Prep. Proced. Int. 1992, 24, 185–188.