COMMUNICATIONS
Table 1. Selected physical properties for compounds 35 and 3.
underwent the condensation reaction. Despite this unexpect-
ed outcome, the HWE reaction still served as an excellent
means by which to separate the C16 ± C18 atropisomers which
resulted from the Suzuki coupling, providing 3 in atropiso-
merically pure form.
In conclusion, although the synthesis of the heterocyclic
core of diazonamide A initially seemed elusive after numer-
ous failed approaches, both as illustrated here as well as in
several attempts whose description will have to await the full
account of this work, the power of the Suzuki and HWE
35: Rf 0.12(silica gel, ethyl acetate/hexane 1/1); IR (film): nÄmax 2912,
2851, 1590, 1487, 1451, 1410, 1371, 1226, 1108, 1010, 795, 703 cmÀ1; 1H NMR
(600 MHz, CD3CN): d 7.98 (d, J 17.5 Hz, 1H), 7.46 (s, 1H), 7.44 (dd,
J 8.3, 0.8 Hz, 1H), 7.42(dd, J 8.3, 1.3 Hz, 1H), 7.36 (t, J 7.9 Hz, 1H),
7.25 ± 7.23 (m, 2H), 7.15 (dd, J 8.1, 1.5 Hz, 1H), 6.98 (t, J 7.7 Hz, 1H),
6.98 (dd, J 7.4, 0.9 Hz, 1H), 6.85 (s, 1H), 6.82(dd, J 7.4, 1.7 Hz, 1H),
5.87 (d, J 17.5 Hz, 1H), 4.26 (AB, J 9.2Hz, nab 64.7 Hz, 2H), 3.81 (s,
3H), 3.31 (s, 3H), 2.53 (s, 3H); 13C NMR (150 MHz, CD3CN): d 162.0,
157.6, 149.3, 148.2, 146.1, 141.1, 139.4, 139.2, 134.0, 130.4, 130.3, 129.0, 128.8,
127.1, 125.5, 125.4, 123.9, 122.3, 122.3, 117.9, 114.5, 110.8, 104.3, 75.3, 60.3,
60.2, 59.5, 33.7; HR-MS (matrix-assisted laser desorption/ionization) for
À
reactions to effect C C bond formation has ultimately
C30H27N2O3 [MH ]: calcd: 463.2016, found: 463.2005.
provided a highly convergent solution for the preparation of
model system 3 in just 17 linear steps from known starting
materials. As such, multigram quantities of both 25 and 31 are
available, and analogues of both fragments for future bio-
logical studies can readily be incorporated into the existing
synthetic pathway. Additionally, the chemistry described for
the preparation of 25 has already been employed[22] to
synthesize a tyrosine-derived benzofuranone fragment pos-
sessing the requisite functionality necessary to complete
diazonamide A. Continuing studies aim at the total synthesis
of diazonamide A and further investigations of the chemical
biology of this important new class of antitumor agents.
3: Rf 0.18 (silica gel, ethyl acetate/hexane 1/1); IR (film): nÄmax 2925,
1591, 1492, 1446, 1373, 1225, 1190, 1115, 928, 747 cmÀ1; 1H NMR (600 MHz,
CD3CN): d 7.53 (dd, J 8.3, 0.8 Hz, 1H), 7.46 (s, 1H), 7.42± 7.38 (m,
5H), 7.33 ± 7.29 (m, 1H), 7.20 (dd, J 7.0, 0.9 Hz, 1H), 6.97 (dd, J 8.5,
1.3 Hz, 1H), 6.95 (dd, J 8.3, 1.3 Hz, 1H), 6.90 (d, J 12.7 Hz, 1H), 6.86 (s,
1H), 6.81 (t, J 7.4 Hz, 1H), 6.46 (d, J 12.7 Hz, 1H), 5.99 (s, 1H), 3.88 (s,
3H), 3.17 (s, 3H); 13C NMR (150 MHz, CD3CN): d 159.0, 146.0, 143.0,
138.5, 132.5, 131.9, 131.0, 130.9, 130.2, 129.4, 128.7, 127.9, 127.8, 126.4, 126.3,
124.5, 124.0, 123.3, 123.0, 122.0, 121.6, 119.1, 116.7, 110.9, 61.0, 57.9, 33.7;
HR-MS (matrix-assisted laser desorption/ionization) for C29H23N2O3
[MH ]: calcd: 447.1703, found: 447.1707.
O
Received: August 2, 2000 [Z15571]
P(OMe)2
N
TBSO
MeO
OTBS
O
a. [Pd(dppf)Cl2], BPD
[1] N. Lindquist, W. Fenical, G. D. Van Duyne, J. Clardy, J. Am. Chem.
Soc. 1991, 113, 2303 ± 2304.
b. 31, [Pd(dppf)Cl2]
N
Me
O
MeO
O
[2] For other approaches towards the synthesis of diazonamide A, see:
a) X. Chen, L. Esser, P. G. Harran, Angew. Chem. 2000, 112, 967 ± 970;
Angew. Chem. Int. Ed. 2000, 39, 937 ± 940; b) E. Vedejs, J. Wang, Org.
Lett. 2000, 2, 1031 ± 1032; c) E. Vedejs, D. A. Barba, Org. Lett. 2000, 2,
1033 ± 1035; d) P. Magnus, E. G. McIver, Tetrahedron Lett. 2000, 41,
831 ± 834; e) F. Chan, P. Magnus, E. G. McIver, Tetrahedron Lett. 2000,
41, 835 ± 838; f) F. Lach, C. J. Moody, Tetrahedron Lett. 2000, 41,
6893 ± 6896; g) M. C. Bagley, S. L. Hind, C. J. Moody, Tetrahedron
Lett. 2000, 41, 6897 ± 6900; h) M. C. Bagley, C. J. Moody, A. G. Pepper,
Tetrahedron Lett. 2000, 41, 6901 ± 6904; i) H. C. Hang, E. Drotleff,
G. I. Elliott, T. A. Ritsema, J. P. Konopelski, Synthesis 1999, 398 ± 400;
j) P. Magnus, J. D. Kreisberg, Tetrahedron Lett. 1999, 40, 451 ± 454;
k) A. Boto, M. Ling, G. Meek, G. Pattenden, Tetrahedron Lett. 1998,
39, 8167 ± 8170; l) P. Wipf, F. Yokokawa, Tetrahedron Lett. 1998, 39,
2223 ± 2226; m) S. Jeong, X. Chen, P. G. Harran, J. Org. Chem. 1998,
63, 8640 ± 8641; n) C. J. Moody, K. J. Doyle, M. C. Elliott, T. J.
Mowlem, J. Chem. Soc. Perkin Trans. 1 1997, 2413 ± 2419; o) J. P.
Konopelski, J. M. Hottenroth, H. M. Oltra, E. A. VØliz, Z. C. Yang,
Synlett 1996, 609 ± 611; p) C. J. Moody, K. J. Doyle, M. C. Elliott, T. J.
Mowlem, Pure Appl. Chem. 1994, 66, 2107 ± 2110.
[3] Recent examples of macrocyclization resulting from olefin metathesis
include applications to the total synthesis of Sch38516: Z. Xu, C. W.
Johannes, S. S. Salman, A. H. Hoveyda, J. Am. Chem. Soc. 1996, 118,
10926 ± 10927; epothilone A: K. C. Nicolaou, N. Winssinger, J. Pastor,
S. Ninkovic, F. Sarabia, Y. He, D. Vourloumis, Z. Yang, T. Li, P.
Giannakakou, E. Hamel, Nature 1997, 387, 268 ± 272; and manzami-
ne A: S. F. Martin, J. M. Humphrey, A. Ali, M. C. Hillier, J. Am.
Chem. Soc. 1999, 121, 866 ± 867.
[4] P. J. Harrington, L. S. Hegedus, J. Org. Chem. 1984, 49, 2657 ± 2662.
[5] T. Severin, H.-J. Böhme, Chem. Ber. 1968, 101, 2925 ± 2930.
[6] G. A. Roth, E. L. McClymont, Synth. Commun. 1992, 22, 411 ± 420.
[7] See: Ref. [2l] and Y. Oikawa, T. Toshioka, K. Mohri, O. Yonemitsu,
Heterocycles 1979, 12, 1457 ± 1462.
Br
25
36
c. aq. HF
d. Dess–Martin [O]
O
P(OMe)2
N
N
O
O
O
e.
N
N
Me
O
Me
O
MeO
MeO
5
3
Scheme 7. Synthesis of heterocyclic macrocycle 3: a) Bis(pinacolato)di-
boron (1.2equiv), [Pd(dppf)Cl 2] ´ CH2Cl2 (0.15 equiv), KOAc (3.0 equiv),
DMSO, 908C, 4 h, 50%; b) 31 (1.0 equiv), [Pd(dppf)Cl2] ´ CH2Cl2
(0.30 equiv), K2CO3 (3.0 equiv), DME, 858C, 2h, 60%; c) aq. HF, MeCN,
08C, 15 min; d) Dess ± Martin periodinane (2.0 equiv), NaHCO3
(2.0 equiv), CH2Cl2, 2 58C, 8 h, 85% over two steps; e) NaH (2.0 equiv),
THF, 08C, 1 h, 25%. Selected NOE interactions shown for 3 confirm the
indicated stereochemistry.
36 onward indicated a diastereomeric mixture of four com-
pounds (due to a mixture of C11 epimers and atropisomerism
around the C16 ± C18 linkage), similar examination of 3
indicated that only a single diastereomer, which possesses
the stereochemistry shown, resulted from this final trans-
formation. Theoretically, one would expect a 50% yield from
this HWE reaction since the atropisomers cannot interconvert
at the reaction temperatures employed and only half of the
material would have both the aldehyde and phosphonate
groups on the same side of the molecule. Although this
expectation was met, surprisingly only one of the C11 epimers
[8] IBX can readily be prepared from 2-iodobenzoic acid and oxone
following the method of Santagostino et al. see:M. Frigerio, M.
Santagostino, S. Sputore, J. Org. Chem. 1999, 64, 4537 ± 4538.
[9] P. Wipf, C. P. Miller, J. Org. Chem. 1993, 58, 3604 ± 3606.
Angew. Chem. Int. Ed. 2000, 39, No. 19
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3919-3477 $ 17.50+.50/0
3477