After some experimentation, it was found that simply
adding a drop of sulfuric acid to 2 in methanol at 0 °C cleanly
gave methyl glycoside 12 after 3 h (90%, 100% based on
recovered 2), following acetylation of the initially formed
methanolysis product. Longer reaction time or increased
temperature gave several polar acetate cleavage products
which could all be converted to 12 and 2 after peracetylation,
but this lowered the yield slightly and did not significantly
improve the overall conversion.
Final unmasking of the carboxylic acid function was best
achieved using RuO4, formed in situ by adding a catalytic
amount of RuCl3‚3H2O (0.05 equiv) to a 2:2:3 CCl4/CH3-
CN/H2O mixture containing 12 and NaIO4 (12 equiv).5b-e,17
After 3 h at ambient temperature, clean conversion to KDN
pentaacetate methyl glycoside was achieved, isolated as
methyl ester 13 (84%), for which all data (1H NMR; melting
point; IR; HRMS; and optical rotation) were in agreement
with the literature.18,19 The formal synthesis of KDN has thus
been achieved in 45% overall yield from diene diol 6,
employing our convergent ketalization/ring-closing metath-
esis strategy. Global deprotection of 13 has been achieved
previously by moist methanol/sodium methoxide ester
cleavage19a and methyl glycoside hydrolysis (refluxing
AcOH/H2O).3a This efficient and unique entry to KDN
synthesis should make possible the stereocontrolled construc-
tion of various KDN derivatives due to the conformationally
defined bicyclic acetal template and readily differentiated
hydroxyls in the 2,7-anhydro sugar analogue 3. The synthesis
of other sialic acids via this route is presently being pursued
and will be reported in due course.
(5) For examples, see the following: (a) Yamada, T.; Kakinuma, K.;
Oshima, T. Chem. Lett. 1987, 1745-1748. (b) Azam, S.; D’Souza, A. A.;
Wyatt, P. B. J. Chem. Soc., Perkin Trans. 1 1996, 621-627. (c) Arvanitis,
E.; Motevalli, M.; Wyatt, P. B. Tetrahedron Lett. 1996, 37, 4277-4280.
(d) Sloan, M. J.; Kirk, K. L. Tetrahedron Lett. 1997, 38, 1677-1680. (e)
Eguchi, T.; Morita, M.; Kakinuma, K. J. Am. Chem. Soc. 1998, 120, 5427-
5433.
(6) (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV.
1994, 94, 2483-2547. (b) Becker, H.; Sharpless, K. B. Angew. Chem., Int.
Ed. Engl. 1996, 35, 448-451.
Acknowledgment. We thank the NIH [Grant CA74394
(S.D.B.) and CBI Training Grant 5 T32 GM08505 (E.A.V.)]
for generous support of this research. The NIH (1 S10 RR0
8389-01) and NSF (CHE-9208463) are acknowledged for
their support of the NMR facilities of the University of
Wisconsin-Madison Department of Chemistry. We also thank
Michael Kavana for X-ray crystallographic analysis.
(7) Burke, S. D.; Sametz, G. M. Org. Lett. 1999, 1, 71-74.
(8) Kossmehl, G.; Frohberg, H.-C. Chem. Ber. 1986, 119, 50-64.
(9) Grandberg, I. I.; Zuyanova, T. I. Khim. Geter. Soed. 1968, 4, 875-
877.
(10) Sharpless, K. B.; Young, M. W. J. Org. Chem. 1974, 40, 947-
949. Potassium t-butoxide elimination (ref 1) provided 5 in 57% yield from
8 with ∼30% SN2 displacement product.
Supporting Information Available: Experimental pro-
cedures and spectral data for compounds 2-5, 7, 8, and 10-
13; comparison of full characterization for 13 with literature
data; X-ray crystallographic data for 10. This material is
(11) For recent reviews, see the following: (a) Schuster, M.; Blechert,
S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2036-2056. (b) Armstrong, S.
K. J. Chem. Soc., Perkin Trans. 1 1998, 371-388. (c) Grubbs, R. H.; Chang,
S. Tetrahedron 1998, 54, 4413-4450. (d) Schrock, R. R. Tetrahedron 1999,
55, 8141-8153.
(12) See Supporting Information.
OL006887L
(13) Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.;
Pawlak, J. M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447-450.
(14) For reviews, see the following: (a) David, S.; Hanessian, S.
Tetrahedron 1985, 41, 643-663. (b) Grindley, T. B. AdV. Carbohydr. Chem.
Biochem. 1998, 53, 16-142.
(18) (a) Mononen, I.; Lengstad, B.; Lo¨nngren, J. Acta Chem. Scand. B
1980, 34, 775-776. (b) Nakamura, M.; Takayanagi, H.; Furuhata, K.; Ogura,
H. Chem. Pharm. Bull. 1992, 40, 879-885.
(15) The tin-catalyzed monobenzoylation of various vicinal diols has been
recently reported: (a) Maki, T.; Iwasaki, F.; Matsumura, Y. Tetrahedron
Lett. 1998, 39, 5601-5604. (b) Iwasaki, F.; Maki, T.; Onomura, O.;
Nakashima, W.; Matsumura, Y. J. Org. Chem. 2000, 65, 996-1002.
(16) (a) Huffman, J. W.; Desai, R. C. Synth. Commun. 1983, 13, 553-
557. (b) Torisawa, Y.; Okabe, H.; Ikegami, S. Chem. Lett. 1984, 1555-
1556. (c) Sato, K.-I.; Yoshitomo, A. Chem. Lett. 1995, 39-40. (d) Shimizu,
T.; Hiranuma, S.; Nakata, T. Tetrahedron Lett. 1996, 37, 6145-6148. (e)
Pour, M.; Willis, A. C.; Furber, M.; Mander, L. N. Tetrahedron 1998, 54,
13833-13850.
(19) Data for 13: 1H NMR (CDCl3) δ 5.42 (dd, J ) 5.5, 2.5 Hz, 1H),
5.32 (ddd, J ) 11.5, 10, 5 Hz, 1H), 5.31 (ddd, J ) 6.5, 5.5, 2 Hz, 1H),
4.90 (t, J ) 10 Hz, 1H), 4.71 (dd, J ) 12.5, 2.5 Hz, 1H), 4.15 (dd, J )
12.5, 6.5 Hz, 1H), 4.06 (dd, J ) 10, 2 Hz, 1H), 3.82 (s, 3H), 3.26 (s, 3H),
2.52 (dd, J ) 13, 5 Hz, 1H), 2.12 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.02
(s, 3H), 2.00 (s, 3H), 1.84 (dd, J ) 13, 11.5 Hz, 1H); 13C NMR (CDCl3)
δ 170.6 (C), 170.2 (C), 170.00 (C), 169.92 (C), 169.8 (C), 167.1 (C), 98.7
(C), 70.8 (CH), 69.9 (CH), 69.1 (CH), 67.8 (CH), 67.4 (CH), 62.0 (CH2),
52.7 (CH3), 51.3 (CH3), 36.9 (CH2), 21.0 (CH3), 20.8 (CH3), 20.72 (CH3),
20.67 (CH3), 20.6 (CH3); IR (thin film) 2956, 1748, 1373, 1220, 1050 cm-1
;
(17) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J.
Org. Chem. 1981, 46, 3936-3938.
[R]24 -6.8° (c ) 0.28, CHCl3); mp 115-116 °C; HRMS (FAB) calcd.
D
for C21H30O14Na (M+Na+) 529.1533, found 529.1555.
240
Org. Lett., Vol. 3, No. 2, 2001