Paper
Green Chemistry
nant under certain circumstances. For example, isomerization
competes when there is a double bond that can isomerize to
form a more stable, conjugated species. This isomerization
process is aided by the slower rate of TH using PMHS/alcohol
(compared to HBpin/amine) which facilitates access to the Fe
(I) species necessary for isomerization.51 For dehydrocoupling,
if TH is too challenging, or if the concentration of hydride and
proton source become too great, then hydrogen release chem-
istry dominates and isomerization stalls.
4 C. S. G. Seo and R. H. Morris, Organometallics, 2019, 38,
47–65.
5 C. F. de Graauw, J. A. Peters, H. van Bekkum and
J. Huskens, Synthesis, 1994, 1994, 1007–1017.
6 J. S. Cha, Org. Process Res. Dev., 2006, 10, 1032–1053.
7 R. A. W. Johnstone, A. H. Wilby and I. D. Entwistle, Chem.
Rev., 1985, 85, 129–170.
8 D. Wang and D. Astruc, Chem. Rev., 2015, 115, 6621–6686.
9 S. Gladiali and E. Alberico, Chem. Soc. Rev., 2006, 35, 226–
236.
10 S. Lau, D. Gasperini and R. L. Webster, Angew. Chem., Int.
Ed., DOI: 10.1002/anie.202010835.
11 D. M. Sharma and B. Punji, Chem. – Asian J., 2020, 15, 690–
708.
Conclusions
In summary, we have developed an iron-catalyzed TH process
using the poly(silane) PMHS and a bio-alcohol. MeOH, EtOH 12 M. P. Doyle and C. C. McOsker, J. Org. Chem., 1978, 43,
and nBuOH all perform reasonably, but with a higher spectro- 693–696.
scopic yield nBuOH was selected as the proton source. TH sub- 13 J. S. M. Samec, J.-E. Bäckvall, P. G. Andersson and
strate scope included allylarenes, styrenes and unactivated P. Brandt, Chem. Soc. Rev., 2006, 35, 237–248.
alkenes. Deuteration using nBuOD proceeds with a reasonable 14 A. Comas-Vives, G. Ujaque and A. Lledós, in Adv. Inorg.
level of selectivity but use of PhND2 as the D+ source gives a
higher level of selectivity for the terminal position. Changing
Chem, ed. R. van Eldik and J. Harvey, Academic Press,
2010, vol. 62, pp. 231–260.
to use a less sustainable silane, PH2SiH2, does result in com- 15 J. Lipowitz and S. A. Bowman, J. Org. Chem., 1973, 38, 162–
plete selectivity for terminal mono-deuteration of 1-hexene 165.
and allyl benzene but, irrespective of D+ or H− source, styrenes 16 L. T. Brechmann and J. F. Teichert, Synthesis, 2020, 52,
appear to suffer from lack of terminal (2-position) selectivity, 2483–2496.
likely linked to competing electronic effects. Double bond 17 K. Semba, T. Fujihara, T. Xu, J. Terao and Y. Tsuji, Adv.
reduction is predominantly a TH process but excluding the Synth. Catal., 2012, 354, 1542–1550.
alkene from the reaction mixture does allow for efficient dehy- 18 J. W. Hall, D. M. L. Unson, P. Brunel, L. R. Collins,
drocoupling to take place with 90% H2 released from PMHS
reacting with EtOH in the presence of the iron catalyst. Further
M. K. Cybulski, M. F. Mahon and M. K. Whittlesey,
Organometallics, 2018, 37, 3102–3110.
studies to understand the subtleties of the change in reaction 19 C. Johnson and M. Albrecht, Catal. Sci. Technol., 2018, 8,
mechanism postulated here, in comparison to previous pub-
lished work is underway.
2779–2783.
20 G. Wienhöfer, F. A. Westerhaus, R. V. Jagadeesh, K. Junge,
H. Junge and M. Beller, Chem. Commun., 2012, 48, 4827–
4829.
21 P. Döhlert and S. Enthaler, Catal. Lett., 2016, 146, 345–352.
22 B. Tansel and S. C. Surita, Int. J. Environ. Sci. Technol.,
2017, 14, 795–802.
Conflicts of interest
There are no conflicts to declare.
23 M. Espinal-Viguri, S. E. Neale, N. T. Coles, S. A. Macgregor
and R. L. Webster, J. Am. Chem. Soc., 2019, 141, 572–582.
24 H. Nagashima, Synlett, 2015, 866–890.
25 N. S. Shaikh, K. Junge and M. Beller, Org. Lett., 2007, 9,
5429–5432.
Acknowledgements
Danila Gasperini is thanked for some preliminary reaction
optimization. The EPSRC is thanked for funding.
26 C. Dal Zotto, D. Virieux and J.-M. Campagne, Synlett, 2009,
276–278.
27 D. Addis, N. Shaikh, S. Zhou, S. Das, K. Junge and
M. Beller, Chem. – Asian J., 2010, 5, 1687–1691.
28 E. Buitrago, L. Zani and H. Adolfsson, Appl. Organomet.
Chem., 2011, 25, 748–752.
29 K. Muller, A. Schubert, T. Jozak, A. Ahrens-Botzong,
V. Schünemann and W. R. Thiel, ChemCatChem, 2011, 3,
887–892.
References
1 L. Červený, Catalytic hydrogenation, New York, Elsevier,
New York, U.S.A, 1986.
2 P. A. Chaloner, M. A. Esteruelas, F. Joó and L. A. Oro,
Homogeneous
Netherlands, Imprint: Springer, 1st edn, 1994.
3 S. A. Green, S. W. M. Crossley, J. L. M. Matos, S. Vásquez-
Hydrogenation,
Dordrecht:
Springer
30 L. C. M. Castro, D. Bézier, J.-B. Sortais and C. Darcel, Adv.
Synth. Catal., 2011, 353, 1279–1284.
Céspedes, S. L. Shevick and R. A. Shenvi, Acc. Chem. Res., 31 A. P. Dieskau, J.-M. Begouin and B. Plietker, Eur. J. Org.
2018, 51, 2628–2640.
Chem., 2011, 2011, 5291–5296.
2708 | Green Chem., 2021, 23, 2703–2709
This journal is © The Royal Society of Chemistry 2021