Published on Web 05/21/2005
Enantioselective Synthesis of Cyclic Amides and Amines
through Mo-Catalyzed Asymmetric Ring-Closing Metathesis
Elizabeth S. Sattely,† G. Alexander Cortez,† David C. Moebius,†
Richard R. Schrock,‡ and Amir H. Hoveyda*,†
Contribution from the Department of Chemistry, Merkert Chemistry Center, Boston College,
Chestnut Hill, Massachusetts 02467, and Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139
Received March 2, 2005; E-mail: amir.hoveyda@bc.edu
Abstract: First, an efficient method for the synthesis of optically enriched N-fused bicyclic structures is
reported. Through Mo-catalyzed desymmetrization of readily available achiral polyene substrates, 5,6-,
5,7-, and 5,8-bicyclic amides can be synthesized in up to >98% ee. The effects of catalyst structure, olefin
substitution, positioning of Lewis basic functional groups and ring size are examined and discussed in
detail. In the second phase of investigations, a catalytic asymmetric method for highly enantioselective (up
to 97% ee) synthesis of small- and medium-ring unsaturated cyclic amines is reported; optically enriched
products bear a secondary amine or a readily removable Cbz or acetamide unit. Regio- and diastereo-
selective functionalizations of olefins within the optically enriched amine products have been carried out.
Both catalytic asymmetric methods include transformations that lead to the formation of trisubstituted as
well as disubstituted cyclic alkenes. The protocols outlined herein afford various cyclic amines of high
optical purity; such products are not easily accessed by alternative protocols and can be used in
enantioselective total syntheses of biologically active molecules.
Introduction
One area of investigation is in connection with the develop-
ment of a class of chiral Mo-based alkylidenes (see Chart 1)4
that may be used to prepare optically enriched cyclic amines5
through catalytic asymmetric ring-closing metathesis (ARCM).6,7
As summarized in Scheme 1, we have recently disclosed that
in the presence of chiral Mo complexes, a number of achiral
N-containing trienes can be efficiently desymmetrized to afford
the derived unsaturated amines in up to >98% ee.8 These
investigations established for the first time that enantioselective
olefin metathesis can be used to obtain enantioenriched unsat-
Cyclic and acyclic chiral amines are important building blocks
required for the synthesis of a variety of biologically active
organic molecules. Design and development of catalytic methods
that lead to enantioselective formation of N-containing com-
pounds therefore define an important area of research in organic
synthesis.1 Within this context, several programs in these
laboratories have been focused on the discovery and utility of
various chiral catalysts that promote efficient enantioselective
synthesis of a range of acyclic2 and cyclic amines3 with high
levels of optical purity.
(3) For example, see: Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2003, 125, 4018-4019.
(4) For a review on Mo-catalyzed enantioselective olefin metathesis, see:
Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592-
4633.
† Boston College.
‡ Massachusetts Institute of Technology.
(1) For reviews regarding enantioselective synthesis of amines, see: (a) Enders,
D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895-1946. (b)
Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069-1094. (c) Weintraub,
P. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59,
2953-2989. For representative recent reports, see: (d) Denmark, S. E.;
Stiff, C. M. J. Org. Chem. 2000, 65, 5875-5878. (e) Fujihara, H.; Nagai,
K.; Tomioka, K. J. Am. Chem. Soc. 2000, 122, 12055-12056. (f) Dahmen,
S.; Brase, S. J. Am. Chem. Soc. 2002, 124, 5940-5941. (g) Hermanns, N.;
Dahmen, S.; Bolm, C.; Brase, S. Angew. Chem., Int. Ed. 2002, 41, 3692-
3694. (h) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002,
35, 984-995. (i) Boezio, A. A.; Charrette, A. B. J. Am. Chem. Soc. 2003,
125, 1692-1693. (j) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem.
Soc. 2004, 126, 5686-5687. (l) Keith, J. M.; Jacobsen, E. N. Org. Lett.
2004, 6, 153-155. (l) Liu, X.; Li, H.; Deng, L. Org. Lett. 2005, 7, 167-
169.
(5) For a review on synthesis of N-containing compounds through catalytic
olefin metathesis, see: (a) Deiters, A.; Martin, S. F. Chem. ReV. 2004,
104, 2199-2238. For a review on catalytic RCM in alkaloid synthesis,
see: (b) Felpin, F. X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693-3712.
(6) For Mo-catalyzed ARCM, see: (a) Alexander, J. B.; La, D. S.; Cefalo, D.
R.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 4041-
4142. (b) La, D. S.; Alexander, J. B.; Cefalo, D. R.; Graf, D. D.; Hoveyda,
A. H.; Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 9720-9721. (c)
Weatherhead, G. S.; Houser, J. H.; Ford, J. G.; Jamieson, J. Y.; Schrock,
R. R.; Hoveyda, A. H. Tetrahedron Lett. 2000, 41, 9553-9559. (d) Cefalo,
D. R.; Kiely, A. F.; Wuchrer, M.; Jamieson, J. Y.; Schrock, R. R.; Hoveyda,
A. H. J. Am. Chem. Soc. 2001, 123, 3139-3140. (e) Kiely, A. F.; Jernelius,
J. A.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 2868-
2869. (f) Teng, X.; Cefalo, D. R.; Schrock, R. R.; Hoveyda, A. H. J. Am.
Chem. Soc. 2002, 124, 10779-10784.
(7) For Ru-catalyzed ARCM, see: (a) Seiders, T. J.; Ward, D. W.; Grubbs, R.
H. Org. Lett. 2001, 3, 3225-3228. (b) VanVeldhuizen, J. J.; Gillingham,
D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc.
2003, 125, 12502-12508.
(8) (a) Dolman, S. J.; Sattely, E. S.; Hoveyda, A. H.; Schrock, R. R. J. Am.
Chem. Soc. 2002, 124, 6991-6997. (b) Dolman, S. J.; Schrock, R. R.;
Hoveyda, A. H. Org. Lett. 2003, 5, 4899-4902.
(2) For example, see: (a) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper,
M. L. J. Am. Chem. Soc. 2001, 123, 984-985. (b) Luchaco-Cullis, C. A.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192-8193. (c) Akullian,
L. C.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42,
4244-4247. (d) Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2004, 126, 3734-3735. (e) Mampreian, D. M.; Hoveyda,
A. H. Org. Lett. 2004, 6, 2829-2832. (f) Wu, J.; Mampreian, D. M.;
Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 4584-4585.
9
8526
J. AM. CHEM. SOC. 2005, 127, 8526-8533
10.1021/ja051330s CCC: $30.25 © 2005 American Chemical Society